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1 Introduction

Identification in factor modelling often relates to identifying the scale of factors and the
orientation of the factor basis determining factor order and sign. The more fundamental
issue of whether the decomposition into common and idiosyncratic variation is (uniquely)
identified has eclipsed, as increasingly high-dimensional data sets have become available
(N large), and, relying on their informativeness, few factors (K small) are usually expected
to capture the bulk of data covariation. In exploratory analysis, standard non-parametric
methods extract factors by principal or frequency components analysis (Stock andWatson,
2002; Forni et al., 2005). While in these approaches factors are determined and ordered
according to the average share of covariation explained across series, the interpretation of
factors gets increasingly blurred when they are extracted from high-dimensional sets of
heterogeneous data. The situation is similar when factor extraction is based on singular
value decomposition (Hoff, 2007; Chan et al., 2018). In the parametric framework, factor
identification and ordering is usually induced by imposing restrictions on the factor loading
matrix. Widely used approaches impose restrictions before estimation (Geweke and Zhou,
1996; Aguilar and West, 2000; Bernanke et al., 2005) while more recent ones apply efficient
and order-invariant estimation, where factor identification and ordering is obtained by
post-processing (Aßmann et al., 2016; Chan et al., 2018; Kaufmann and Schumacher,
2019).

Originating in psychometrics, a primary goal in confirmatory factor analysis is to obtain,
besides factor identification, a factor interpretation. This is induced either by rotating fac-
tors to maximize the share of factor-specific variation in specific units, see e.g. Thurstone
(1935), Cattell (1978) or Bollen (1989), or imposing a simple structure on the factor load-
ing matrix to determine factor interpretation, i.e. imposing zero loadings on series not
expected to determine or be loaded by specific factors, see e.g. Jöreskog (1969), Jen-
nrich (1978), Jöreskog (1979), Millsap (2001) or Mulaik (2010). These approaches have
lately been applied also in econometrics (Bai and Ng, 2013; Kose et al., 2003; Moench
et al., 2013). Sparse (exploratory) factor analysis draws on the advantage of inducing a
simple structure into the factor loading matrix to extract relevant factors or eventually ob-
tain factor interpretation (West, 2003; Lucas et al., 2006; Beyeler and Kaufmann, 2021).
Recent advances in econometrics propose estimation procedures also relying on sparse
principal components (Zou et al., 2006; Despois and Doz, 2023) or regularized estimation
(Freyaldenhoven, 2023).

Identification has been discussed since the very early stages of factor modelling (Leder-
mann, 1937; Anderson and Rubin, 1956). Global identification dealt with the question
of unique identification of the variance decomposition, related to the number of factors
identifiable from the covariance structure of the data (Shapiro, 1982). Imposing a sim-
ple structure in confirmatory factor analysis raised similar issues (Millsap, 2001; Sato,
1992). Nowadays, sparse exploratory factor analysis in high-dimensional data settings
raises the issue of whether a sparse reduced rank representation is (uniquely) identifiable
from the data covariance (Frühwirth-Schnatter et al., 2023; Kaufmann and Pape, 2023),
given that in a factor model of potentially increasing dimension the factor loading matrix
may become increasingly sparse.
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This raises anew the issue of the identification of the variance decomposition (global iden-
tification) and factors (rotational identification), which motivates the present paper. We
review relevant global and local identification and uniqueness conditions that have been
documented in the literature. Besides conditions derived in Anderson and Rubin (1956)
and Sato (1992) related to global identification, we will review conditions for mode or
rotational identification (Bekker, 1986; Neudecker, 1990; Bai and Wang, 2014). Our con-
tribution relies on the geometric representation of factor models (Lawley and Maxwell,
1971) to derive a geometric approach to identification. Full-rank, rotational identification
is based on set identification conditions, where only (at least) K instead of 2K − 1 sets
of subspaces lying in the K-dimensional factor space need to be populated for full-rank,
rotational identification. Sato (1992) derived a counting rule which provides a necessary
condition for global identification of the reduced-rank variance decomposition. Checking
the rule needs an exponentially growing combinatorial number of evaluations (2K − 1),
which becomes quickly computationally prohibitive for factor models of increasing dimen-
sions. Based on our geometric approach to identification, we provide two algorithms, the
O(K2) and the set-based algorithm for evaluating efficiently Sato’s counting rule.

Related to our paper, Frühwirth-Schnatter et al. (2023) present a thorough analysis of
identification based on the so-called generalized lower triangular (GLT) structure, where
the leading non-zero loadings of factors (pivot elements) need to be in different rows (pivot
rows). While imposing or rotating into a GLT structure may serve the evaluation of
model identification, we will argue that imposing a GLT structure for estimation is prone
to the same problem as the widely applied positive lower triangular (PLT) identification
constraints. Imposing a GLT structure is not order-invariant, may induce an orientation
of the factor basis destroying or biasing the sparse structure underlying the data. Our
approach to identification suggests that requiring the loadings leading the pivot elements
to equal zero is potentially misleading when the purpose is to estimate a sparse factor
loading matrix. Rather, it suffices to determine pivot rows or pivot series, who when
re-ordered first in the data set would lead to an unordered GLT structure in the factor
loading matrix. The result of our set identification procedure can help in determining
those pivot series.

In the next section, we introduce the factor model and briefly review published results and
issues related to global and local identification, relevant for motivating our contribution.
Section 3 relies on the geometric interpretation of factor models to introduce the geometric
approach to identification. Based on these considerations, we propose two algorithms,
the O(K2) and the set-based algorithm, which allow an efficient evaluation of Sato’s
counting rule (Sato, 1992). Section 4 documents the efficiency and the performance of
the algorithms by comparing them to the plain evaluation of Sato’s rule. An application
to exchange rate returns illustrates the approach. Section 5 concludes.

2 Representation and identification

We review results concerning global and local identification of factor models published in
the literature, which are relevant for motivating and introducing the geometric approach
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to identification.

2.1 Representation

Collect observed data in vector Y = (y′1, . . . , y
′
T )

′, where each repeated measurement yt,
t = 1, . . . , T , denotes an N × 1 vector of variables or units yit, i = 1, . . . , N , and can be
represented as

yt = Λft + ϵt, (1)

E (ftf
′
t) = IK , E (ϵtϵ

′
t) = Σϵ, Σϵ diagonal,

with K << N and where ft is a K×1 vector of latent factors, Λ = {λik|i = 1, . . . , N, k =
1, . . . , K} is the N ×K factor loading matrix and ϵt is an N × 1 vector of idiosyncratic
components.1 As common variation is captured by the factor component only, Σϵ is
diagonal and E(ftϵ

′
t) = 0. Finally, identification issues we discuss in the following are

independent of distributional assumptions; therefore, we do not specify any so far. We
assume that first and second (unconditional) moments are, respectively, zero and constant,
which means that observed data in (1) follows a covariance-stationary process.

Underlying factors are usually unobserved and have to be extracted from observed data
variation, Σy = E(yty

′
t):

Σy = ΛΛ′ + Σϵ. (2)

Finding a solution to (2) does not only mean mathematically solving the system of N(N+
1)/2 independent equations. A valid decomposition requires Σϵ to be positive definite and
Σy − Σϵ positive semi-definite and of lower-rank K.

Questions that arise are (a) does a solution exist and is it unique, which concerns global
identification; (b) is Σϵ unique, which concerns local identification, and (c) for an identified
solution, how to determine the orientation of the factor basis which includes factor order
and sign, which concerns rotational or mode identification. We briefly review results
concerning the first two issues before elaborating in more details on the last one.

2.2 Global and local identification

The most general concept of identification implies that for the decomposition into Λ and
Σϵ, there exists only a single solution. Several results have established the necessary
and sufficient conditions for identifying a factor model, some of which are discussed be-
low. However, a complete solution to the global identification problem has not yet been
achieved, see e.g. Millsap (2011).

1We assume without loss of generality an identity covariance matrix for factors, given that correlated

factors f̃t can be de-correlated by using e.g. a Cholesky decomposition of the factor covariance: E
(
f̃tf̃

′
t

)
=

Σf̃ = LL′; L−1Σf̃L
−1′ = IK . When post-multiplying Λ̃ with L, the factor model with correlated factors

is observationally equivalent to system (1). yt = Λ̃LL−1f̃t + ϵt = Λft + ϵt.
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Definition 2.1. Global identification
Model (2) is globally identified, if there is a Σϵ with non-negative diagonal elements which
solves (2) and yields a common covariance matrix Σy − Σϵ that is positive-semidefinite
and of reduced rank K (Anderson and Rubin, 1956, AR56). ⋄

Definition 2.2. Local uniqueness
Model (2) is locally unique, if in the neighbourhood of Σϵ there is no other idiosyncratic
variance matrix Σ̃ϵ that solves (2) and yields a common covariance Σy−Σ̃ϵ that is positive-
definite and of reduced rank K (Shapiro, 1985, 1989). ⋄

A sufficient condition for global identification is given in Theorem 5.1 of AR56 (adjusted
here in notation)

A sufficient condition for identification of Σϵ and Λ up to multiplication on the
right by an orthogonal matrix is that if any row of Λ is deleted there remain
two disjoint submatrices of rank K.

Further theorems provide either necessary or necessary and sufficient conditions for global
identification of particular models, see also the overview in Bollen (1989, ch. 7).

Definition 1 includes stronger conditions than the criterion given by Ledermann’s bound
(Ledermann, 1937), which equates the number of equations with the number of unknowns
in (2) and yields φ(N) = (2N+1−

√
8N + 1)/2. The bound yields a hypothetical criterion

about the number of factors needed to obtain a reduced-rank decomposition as in (2). It
is not very useful, though, because an algebraic solution does not exclude cases where Σϵ

contains negative elements (Heywood case) or Σy − Σϵ is not positive-semidefinite.2

As regards the Ledermann bound, Shapiro (1982) showed that it is almost surely a lower
bound for the number of factors needed to obtain a reduced rank common covariance.3

2A noteworthy insight from counting is that at least three loadings must be non-zero to identify one
factor, as a minimum of six covariances is needed to identify six unknown parameters:

Σy =

 σ2
1 σ1σ2 σ1σ3

σ2σ1 σ2
2 σ2σ3

σ3σ1 σ3σ2 σ2
3

 =

 λ21 + σ2
ϵ1 λ1λ2 λ1λ3

λ2λ1 λ22 + σ2
ϵ2 λ2λ3

λ3λ1 λ3λ2 λ23 + σ2
ϵ3

 .
Theorem 4.2 of AR56 states additional conditions for a solution satisfying a factor representation (adjusted
in notation)

A necessary and sufficient condition that Σy be a covariance matrix of a factor analysis
model with one factor is that N(N − 1)/2 − N independent tetrad conditions are satisfied
and

0 ≤ σkiσij
σkj

≤ σ2
i , σkj ̸= 0

for one pair (j ̸= k) for each i.

When N = 3, no tetrad conditions are left and the solution is exact: σϵ,k = σ2
k −λ2k, k = 1, . . . ,K. When

N = 4, two additional tetrad conditions need to be fulfilled: σ31σ42 − σ41σ32 = 0, σ21σ34 − σ31σ24 = 0.
For K > 1 conditions become more complicated (Wilson and Worcester, 1939, AR56). From these
considerations, we conclude that whether a representation (2) exists depends ultimately on characteristics
of the data covariance Σy (AR56, last paragraph of Section 5).

3That is, there are “almost no” sample covariance matrices that have factor structure with the number
of factors lower than the Ledermann bound.
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Shapiro (1985) further showed that any Σϵ which solves (2) is almost surely non-unique
if K is above the Ledermann bound and almost surely locally unique when K is at or
below the Ledermann bound.

Note that AR56 do not discuss the Ledermann bound explicitly, but evaluate the number
of degrees of freedom of the (static) factor model, which is

c =
N(N + 1)

2
−N −

(
NK − K(K − 1)

2

)
=

(N −K)2 −N −K

2
. (3)

They state that an algebraic solution is possible when c ≤ 0 whereas when c > 0, there
is generally no solution. In the case of c ≤ 0, the solution may not be unique. Hence,
it may be appropriate to increase c, e.g. by imposing additional restrictions on Λ. Both
confirmatory factor analysis and sparse factor analysis increase c, albeit usually not in a
way that results in a unique solution. An increase in the number of factors K, on the
other hand, reduces c. In practical context, the case c > 0 seems much more relevant.
As it is almost impossible to find a parsimonious solution for a factor representation of a
given sample covariance matrix Sy, see Shapiro (1982), it is usually assumed that Sy ̸= Σy,

and Σ̂y = Λ̂Λ̂′ + Σ̂ϵ. Implicitly, Σ̂y thus “satisfies some c conditions” (AR56), imposed

through the structure of the factor model. Whether Σ̂y is a plausible estimate, however,
also depends on the type of model used. For instance, a sparse factor model with many
factors is much more flexible than a dense model with fewer factors, even if the number
of parameters is the same.

Sato (1992) frames global identification into the analysis of correlation, and represents
regions of unique decompositions geometrically. He qualifies and extends results of AR56,
in particular derives a necessary condition for Theorem 5.1 of AR56 to hold (Sato, 1992,
Theorem 3.3., adjusted here in notation):

A necessary condition for satisfying the condition of Theorem [5.1 in AR56]
is that the submatrices which consist of each q columns of ΛG have at least
(2q + 1) nonzero rows for every nonsingular G (q = 1, 2, . . . , K).

This “counting rule” (Frühwirth-Schnatter et al., 2023) encompasses Theorem 5.6 in
AR56, which states a necessary condition for global uniqueness to be that each column of
ΛG (for every non-singular matrix G) should have at least three non-zero loadings. The
results prove useful to assess global and local identification in K << N settings, where
the factor loading matrix may be sparse (West, 2003).

2.3 Rotational or mode identification

Definition 2.3. Equivalence class
A locally unique model defines an equivalence class. The equivalence class contains all
solutions for which Σy − Σϵ = ΛΛ′ is positive-semidefinite and has reduced rank K, see
also Millsap (2001). ⋄
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Definition 2.4. Mode identification
A solution in an equivalence class which identifies the orientation and scale of the factor
basis, factor position and sign, is called a mode-identified solution. ⋄

Assuming a locally unique solution to (2) is given, it is clear that (2) is identified up to
rotation, given that ΛΛ′ can always be replaced by ΛQQ′Λ′ using an orthogonal matrix
Q, or, if Σf̃ ̸= IK , Λ̃Σf̃ Λ̃

′ can always be replaced by Λ∗Σf∗Λ∗′ = Λ̃QQ−1Σf̃Q
−1′Q′Λ̃′ using

an arbitrary, non-singular matrix Q.

A first set of restrictions fixes the basis and the scale of the factor space. An obvious
assumption is to set Σf = IK , which defines an orthogonal basis of unit scale. This

provides K(K+1)/2 restrictions. Further, assuming that every rotation Q−1ΣfQ
−1′ = IK

should not induce a change in the assumption Σf = I reduces the set of rotation matrices
Q to orthogonal matrices, of which K(K − 1)/2 elements are free. Therefore, to fix the
orientation of the basis, we need an additional K(K − 1)/2 restrictions.

AR56 suggest three possible sets of restrictions to obtain rotational identification, the first
two of which are typically used in exploratory factor analysis. The first set of constraints
restricts the K(K − 1)/2 upper diagonal elements of Λ to zero, i.e. λik = 0 for k >
i (Geweke and Singleton, 1981; Geweke and Zhou, 1996). The position of the zeros
additionally defines factor order. The first factor hence loads only on variable 1, while the
second loads on variable 1 and 2 and so on. Factor sign is identified by requiring λkk > 0
for k = 1, . . . , K, i.e. diagonal elements to be positive. The second set of constraints
restricts Λ to satisfy Λ′Λ = D with D diagonal (Stock and Watson, 2002). In this case,
factor order is determined by requiring that the nonzero diagonal elements inD be distinct
and ordered in increasing or decreasing order of magnitude. The last set of constraints
requires that Λ′Σ−1

ϵ Λ is a diagonal matrix, whose nonzero diagonal elements are distinct
and ordered in increasing or decreasing order of magnitude.

Other identification constraints assume Σf diagonal, albeit without unit scaling. Then,
in addition to requiring λik = 0 for k > i, the elements λkk = 1 for k = 1, . . . , K are set to
unity. This setup is used in e.g. West et al. (2001). Alternatively, Σf may be left altogether
unconstrained, which yields an unscaled oblique factor basis. For rotational identification
we then need K2 restrictions. Constraining the leading K ×K submatrix of Λ, ΛK = IK
represents a possibility to achieve rotational identification, as suggested in Jöreskog (1979)
and applied in Bernanke et al. (2005). In this case, the first K variables are the factors,
i.e. they define factor position and factor scale. The restrictions imposed on the leading
K rows of Λ may alternatively also be spread across any subset of K rows in Λ. Imposing
them on the leading K rows is just a matter of convenience. However, even though these
constraints guarantee mode identification, they are not likelihood invariant with respect
to variable ordering and may lead to serious estimation issues, see e.g. Millsap (2001),
Chan et al. (2018). An illustration is given in Subsection 3. Recent advances therefore
suggest to estimate just-identified or unrestricted sparse factor models, and recover mode
identification by processing the estimation output (Aßmann et al., 2016; Kaufmann and
Schumacher, 2019; Despois and Doz, 2023).
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Mode-identification in a dynamic factor model4 needs essentially the same K2 number
of restrictions to identify the basis, scale and orientation of the factor space. As in the
static case, identification of factor position and sign requires additional restrictions. The
analogue to setting Σf = I is to set the covariance matrix of the factor innovations to
the identity matrix, Ση = I. This renders factors conditionally independent. Although
dynamic factor processes are assumed to be diagonal in some applications (Kose et al.,
2003; Otrok and Whiteman, 1998), this does not have to be imposed generally in a
K << N (sparse) environment (Beyeler and Kaufmann, 2021). A minimum ofK(K−1)/2
zero restrictions on Λ and a specific sparse structure are necessary for mode identification,
see below.

Discussions in confirmatory factor analysis have shown that imposing additional con-
straints on the factor loading matrix may result in specifications that lack unique mode
identification (Jennrich, 1978).5 These issues translate to high-dimensional settings in
confirmatory and exploratory factor analysis as well, where Λ may be sparse or subject to
more zero restrictions than necessary for mode identification. In particular, some results
show that multiple sparse structures may be the rule rather than the exception. Al-
gina (1980) provided an explanation for the counterfactual example published in Jennrich
(1978) and derived first rules concerning mode identification based on a rank condition.
Bekker (1986) and Neudecker (1990) expressed the set of constraints placed on the factor
loadings matrix as Rvec(Λ) = r. Bekker (1986) showed that a necessary and sufficient

4Parametric extensions of (1) may include dynamic processes for ft and ϵt, ft = ϕ1ft−1+· · ·+ϕpft−p+
ηt and ϵit = ψ1ϵi,t−1 + · · ·+ ψqϵi,t−q + υit, respectively.

5 For example, Λ, although identified when re-ordering time series, can be transformed to ΛC (again
identified when re-ordering time series), with a different loading structure below the identical first three
rows of loadings (Householder transformation):

Λ =



1.41 0 1.12 0
1.42 −0.79 0 0
0.67 0.89 −0.10 −1.09

−1.21 0 0 0.03
0.72 −1.07 0.32 −1.21
1.63 −0.81 0.31 0
0.81 −0.34 0.23 −0.41
1.03 0 0 0
0.73 0.33 −0.16 −0.77

−0.30 −0.75 0.63 0.37


→ ΛC =



1.41 0 1.12 0
1.42 −0.79 0 0
0.67 0.89 −0.10 −1.09

−0.99 0.38 −0.27 0.50
1.52 0.37 −0.69 0.55
1.67 −0.73 0.26 0.09
0.99 0 0 0
0.84 −0.35 0.24 −0.43
0.76 0.38 −0.21 −0.70
0 −0.20 0.24 1.05


,

where C = IK−2vv′, v = null(Λ∗) and Λ∗ collecting the first rows of Λ determined by min(imax, kmax−1),
where imax and kmax refer to the largest row and column with a non-zero element on the upper diagonal
of Λ (Here imax = 4, kmax − 1 = 3), and

v = null

 1.41 0 1.12 0
1.42 −0.79 0 0
0.67 0.89 −0.10 −1.09

 → C =


0.81 −0.34 0.24 −0.41

−0.34 0.39 0.42 −0.74
0.24 0.42 0.70 0.52

−0.41 −0.74 0.52 0.09

 .
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condition for mode identification requires that6

rk

(
D+

K

R(IK ⊗ Λ)

)
= K2,

and Neudecker (1990) proved that

rk

(
D+

N(Λ⊗ IN)
R

)
= NK

is equivalent to Bekker’s condition under the assumption rk (Λ) = K. More recently, Bai
and Wang (2014) extend these results to mode identification conditions for dynamic factor
models, Φ(L)ft = B(L)ηt, where Φ(L), B(L) represent polynomials in the lag operator.
By defining

Φ = [Φ1, . . . ,Φp] , Φ̃ =

 Φ1
...
Φp

 , B = [B1, . . . , Bq] , B̃ =

 B1
...
Bq

 ,
and expressing restrictions as RΛvec(Λ) = rΛ, RΦvec(Φ) = rΦ, RBvec(B) = rB, the rank
condition becomes:

rk


D+

K

RΛ (IK ⊗ Λ)

RΦ

[
IK ⊗ Φ̃− Φ′ ⊗ IK

]
RB

[
IK ⊗ B̃ −B′ ⊗ Ik

]
 = K2.

Importantly, these rank conditions do not guard against singleton or spurious factor load-
ings (only one non-zero factor loading in a column), leading to an indeterminacy between
factor and idiosyncratic variance.7 Hence, fulfilled rank conditions do not imply global
identification. Global identification is assumed to hold in a first place.

3 A geometric approach to identification

3.1 Full-rank mode identification: Set conditions

Rank conditions can be derived based on a geometric interpretation of factor models,
where Σf spans a possibly correlated factor basis8 and each row λi in Λ represents weights

6The matrix D+
K is the Moore-Penrose inverse of the duplication matrix DK , which transforms the

half-vectorization of a K ×K symmetric matrix X into its vectorization as DKvech(X) = vec(X).
7Assume that factor K has a nonzero loading only for variable i. Then the variance for variable i can

be decomposed as

K−1∑
k=1

λ2ikσ
2
fk + λ2iK︸︷︷︸

≡1

σ2
fK + σ2

i =

K−1∑
k=1

λ2ikσ
2
fk + (σ2

fK + c) + (σ2
i − c)

for c ∈ (−σ2
fK , σ

2
i ]. The case c = −σ2

fK is inconsistent with the unity constraint and would imply that

factor K can be omitted from the analysis. Conversely, the case c = σ2
i , implies that all remaining

variable i’s variation unexplained by the first K − 1 factors is assigned to factor K.
8Σf = IK corresponds to an orthonormal factor basis.
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Figure 1: Coordinates representing five rows of two-dimensional factor loadings, of which each
of two pairs are located in a 1-dimensional subspace (blue lines). The green lines correspond to
a factor basis induced by a rotation into a GLT structure. The red stars indicate factor loadings
when additional moderate shrinkage is induced into the GLT structure.

attached to basis vectors and corresponds to cartesian coordinates in a K-dimensional
space (Lawley and Maxwell, 1971). It is useful to introduce some geometric and topo-
logical concepts. Whereas the considered concepts can generally be defined for various
fields, we are only interested in real numbers, see e.g. Boothby (2002) and James (1976).
Denote as a K-frame a set of K independent column vectors in the RN with K < N , or,
as an N × K matrix with full column rank. The set of all K-frames in the RN is then
denoted as the (real) non-compact Stiefel manifold V (K,N).9 As the K independent
column vectors in a K-frame span the K-dimensional (real) vector space RK , we consider
its k-dimensional subspaces k < K. The set of all k-dimensional linear subspaces of RK

defines the (real) Grassmann manifold Gr(k,K). For instance, Gr(1, 2) is the set of all
lines through the origin in a plane. Finally, the set of all orthogonal K × K matrices
is denoted as the (real) orthogonal group O(K), corresponding to an orthogonal factor
basis.

A necessary condition for the column space of Λ to exist is that Λ has full column rank K,
such that a subset of rows of Λ, say Λa, exists that spans the RK . Equivalently, defining
the vector space W that contains all row vectors of Λ (the K-frame defined above), i.e.
W = {λi·|i = 1, . . . , N}, it must hold that W /∈ Gr(k,K) for k < K.

9Note that we do not require the columns of the K-frame to be orthogonal, as sometimes defined.
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For example,10 Figure 1 plots the following loading matrices as coordinates:

Λ =

(
Λa

Λb

)
=


0.66 0.95

−1.05 −0.73
0.96 −1.37
0.84 0.59

−0.36 0.51

 , Λ̃ =


1.09 0.40

−1.28 0.00
0.00 −1.68
1.02 0.00
0.00 0.63

 , ΛGLT =


1.16 0.00

−1.20 0.45
−0.58 −1.57
0.96 −0.35
0.21 0.59

 ,

(4)

where coordinates for Λ are specified in terms of the x- and y-axis. Two pairs of row
vectors in Λ, are each located in a 1-dimensional subspace, {W1,W2} ∈ Gr(1, 2) for
W1 = {λ2·, λ4·} and W2 = {λ3·, λ5·}. The subspaces span an orthogonal factor basis
W1 ⊥ W2, indicated with blue lines. The sparse loading matrix Λ̃ corresponds to the
rotated factor basis. The example also illustrates the importance of choosing units when
setting pre-defined identification restrictions onto the factor loading matrix. Choosing
either λ2· and λ4· or λ3· and λ5· as leading units Λa in Λ combined with identification
restrictions such as lower diagonal or diagonal, would fail in identifying a second factor as
each set of units is loaded by a single factor only. On the other hand, using the first two
rows of Λ to rotate into a (generalized) lower triangular structure (Frühwirth-Schnatter
et al., 2023) destroys the sparse structure of the loading matrix.11 The green lines reflect
the rotated factor basis corresponding to ΛGLT in which the factor loading structure
has been rotated into a lower triangular structure. These considerations motivate to base
inference on order-invariant estimation and identify factors, including their order and sign
(rotational identification), after estimation by processing the posterior output (Aßmann
et al., 2016; Chan et al., 2018; Kaufmann and Schumacher, 2019).

Definition 3.1. Subset enumeration (single index)
Consider the set I = {1, . . . , K} with K ≥ 1. The power set P(I) contains all 2K subsets

of I, which can be enumerated by Iw, where w =
K∑
i=1

2i−11{i∈Iw}, and the empty set is

I0 = {}. ⋄

Definition 3.2. Subset enumeration (double index)
Consider the set I = {1, . . . , K} with K ≥ 1. The power set P(I) contains all 2K subsets

of I, with
(
K

k

)
subsets of dimension k for 0 ≤ k ≤ K. To distinguish between subsets

10We use the same numerical example as in Kaufmann and Pape (2023)
11Given the order non-invariance of the (generalized) lower triangular structure, inducing additional

shrinkage for factor loadings below the leading non-zero loading of each factor when estimating the model
might additionally bias the inference on the underlying factors and factor loading matrix. For example,
inducing moderate shrinkage may pull λ4· and λ5· to lie on W̃1 and W̃2, respectively:

ΛGLT =


1.16 0.00

−1.20 0.45
−0.58 −1.57
0.96 −0.35
0.21 0.59

 ,ΛGLT,shrink =


1.16 0.00

−1.20 0.45
−0.58 −1.57
1.03 0.00
0.00 0.62

 , (5)

see the coordinates in red in Figure 1. Obviously, this procedure blurs factor interpretation, biases the
strong correlation across either pair of units 2 and 4 or 3 and 5, and overemphasizes the importance of
Factors 1 and 2 for, respectively, units 4 and 5.
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of different sizes, use index k to indicate the size of the subset and index l to enumerate
the subsets of the same size.

For every Ik,l ⊆ {1, . . . , K}, |Ik,l| = k and ψ(Ik,l) =
K∑
i=1

2K−i1{i∈Ik,l}, such that ψ(Ik,l) >

ψ(Ik,h) for every l < h. The empty set is I0,1 = {}. ⋄

For instance, let I = {1, 2, 3}. Then there exist three two-element subsets of I, namely
I3 = {1, 2} with (see Definition 3.1) w = 21−1 + 22−1 = 1 + 2 = 3, I5 = {1, 3} with
w = 21−1 + 23−1 = 1 + 4 = 5 and I6 = {2, 3} with w = 22−1 + 23−1 = 2 + 4 = 6. Using
Definition 3.2, we associate I3 = I2,1, I5 = I2,2 and I6 = I2,3, since |I3| = |I5| = |I6| = 2,
and ψ(I2,1) = 23−1 + 23−2 = 4 + 2 = 6, ψ(I2,2) = 23−1 + 23−3 = 4 + 1 = 5, and
ψ(I2,3) = 23−2 + 23−3 = 2 + 1 = 3 (ψ(I2,1) > ψ(I2,2) > ψ(I2,3)).

Definition 3.3. Subspace representation of an orthogonal factor model
For a general subspace representation of an orthogonal factor model with K factors, let

Wk ∈ Gr(1, K), Wki ⊥ Wkj , ki ̸= kj, ki, kj ∈ {1, . . . , K},

and

WIk,l =
⋃

j∈Ik,l

Wj and WIw =
⋃
j∈Iw

Wj.

Note that for IK,1 = Iw with w = 2K − 1, WIK,1
=

K⋃
j=1

Wj spans the RK . ⋄

Recall from Equation (3) that Λ has NK − K(K − 1)

2
distinctly identified parameters.

Assume a dense Λ, mode-identified by a lower diagonal structure. We obtain λi· ∈ WIi,1
for i ∈ {1, . . . , K − 1}, and λi ∈ WIK,1

for all i ≥ K. The equivalence class can be
obtained by PNΛPKH, where PN and PK are N -dimensional row- and K-dimensional
column-permutation matrices, respectively, and H ∈ O(K) is a rotation matrix. Sparse
loading matrices, on the other hand, imply λi ∈ WIw , where 0 ≤ |Iw| < K for (almost)
every i ∈ {1, . . . , N}.

A special case obtains if {λi}Ni=1 can be partitioned into K subsets where the kth subset
{λik·}

Nk
ik=1 ∈ Wk. This is the congeneric factor model of Jöreskog (1971) with orthogonal

factors. If the factors are allowed to be correlated, the constraint Wki ⊥ Wkj can be
replaced by Wki ̸= Wkj for all ki ̸= kj, ki, kj ∈ {1, . . . , K}, which renders the model a lot
more flexible.

Using sets reflecting subspaces as defined in Definition 3.3, we can formulate set-based
conditions to evaluate identification properties of factor models. We first assign each
row vector {λi}Ni=1 to the set Iw which corresponds uniquely to its non-zero loadings,
λi ∈ WIw .

12 We denote by Nw the number of rows λi· assigned to Iw, {λiw·}Nw
iw=1 ∈ WIw .

12As we are interested in characterizing the sparse structure of λ, we assign each row to exactly one
Iw, the one that corresponds uniquely to the non-zero loadings. Note that generically, every λi· ∈ WIw

is also element of WIx , for every Ix ⊇ Iw.
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It turns out that full rank identification does not require all index sets to be non-empty.
Rather, it suffices that at least K subsets be non-empty and span the K-dimensional
space. Rotational identification can be based on K elements, each one taken from a
different set. We formulate two conditions.

Definition 3.4. Set identification
For a (sparse) factor loading matrix Λ, assign each row λi· to the set Iw corresponding
uniquely to the non-zero factor loadings, λi· ∈ WIw . Λ is set identified, if at least K sets

are non-empty and the union over these sets spans the RK space,
⋃

w|Nw>0

Iw = {1, . . . , K}.

⋄

Condition 3.1. Full rank set identification: A set identified (sparse) factor loading matrix
Λ has full column rank, Λ ∈ V (K,N), if K rows of factor loadings, λik·, k = 1, . . . , K,
each assigned to a different set, Iwik

̸= Iwil
, k ̸= l, are set identified and form a full-rank

matrix.

Condition 3.2. Set-based mode-identification: A (sparse) factor loading matrix is mode-
identified, if K rows of factor loadings, λik·, k = 1, . . . , K, each assigned to a different
set, Iwik

̸= Iwil
, k ̸= l, are full rank set identified and include at least K(K − 1)/2 zero

loading restrictions.

Remark 3.1. The minimum number of K non-empty sets is given by the fact that factor
identification is based on K populated and distinct rows of the loading matrix. Both
conditions hold for all identification restrictions usually pre-imposed on loading matrices
(see Subsection 2.3). For example, the conditions do not hold for Λ in (4), they hold for
Λ̃ and ΛGLT .

Remark 3.2. Set identification is not satisfied if there are two or more columns in Λ with
the same structure of non-zero loadings. In this case, applying a QR decomposition to
these columns reveals whether they have full rank. If they do, the QR decomposition
induces a GLT structure with additional zero constraints, while preserving the loading
structure in the remaining columns.

Remark 3.3. Mode identification is also obtained upon re-ordering appropriately the K
elements chosen to evaluate full rank set identification as leading units of the data set. Λ
may then be rotated into a GLT structure, inducing at least K(K−1)/2 zero restrictions
required for mode identification.

Remark 3.4. Generally, more than one mode-identified sparse solution may underlie em-
pirical data. In these cases, the mode of interest will be determined by e.g. the sparsest
representation or the factors and their interpretation of interest. In this sense, set-based
mode identification encompasses multiple mode-identified solutions (Kaufmann and Pape,
2023).

The matrix Λ in the example given by Jennrich (1978), see also Footnote 5, can be used to
illustrate Remarks 3.3 and 3.4. Both matrices, the original matrix Λ and the Householder-
transformed matrix ΛC, can be re-ordered by suitable permutation matrices PN1 and PN2 ,
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respectively, to obtain loading matrices mode-identified by GLT and PLT, respectively:

PN1Λ =



1.03 0 0 0
1.42 −0.79 0 0
1.41 0 1.12 0
1.63 −0.81 0.31 0
0.67 0.89 −0.10 −1.09

−1.21 0 0 0.03
0.72 −1.07 0.32 −1.21
0.81 −0.34 0.23 −0.41
0.73 0.33 −0.16 −0.77

−0.30 −0.75 0.63 0.37


, PN2ΛC =



0.99 0 0 0
1.42 −0.79 0 0
1.41 0 1.12 0
0.67 0.89 −0.10 −1.09

−0.99 0.38 −0.27 0.50
1.52 0.37 −0.69 0.55
1.67 −0.73 0.26 0.09
0.84 −0.35 0.24 −0.43
0.76 0.38 −0.21 −0.70
0 −0.20 0.24 1.05


.

3.2 Global identification: Sato’s O(K2) algorithm

Full rank set identification of Λ does not guarantee global identification (see Subsection
2.2), and we may refer to Sato (1992)’s counting rule to evaluate whether this necessary
condition is fulfilled. Based on the sets |Iw| > 0, we may re-frame the counting rule as a
set-based condition.

Condition 3.3. Sato’s set-based counting rule: A necessary condition for a mode-identified
(sparse) factor loading matrix to satisfy the condition of Theorem 5.1 in AR56 is that for
all non-empty sets Iw, the following condition holds:

2K−1∑
x=1

Nx1{(Ix
⋂

Iw )̸=∅} ≥ 2|Iw|+ 1, for all Iw with |Iw| > 0,

where Nx is the number of elements assigned to Ix.

With an increasing number of factors, a full evaluation of Condition 3.3 becomes compu-
tationally expensive, as the number of sets to evaluate, 2K − 1, grows exponentially in K.
In the following, we propose two algorithms to evaluate Condition 3.3, which both need
a considerably lower number of evaluations. The outcome of the algorithms, although
not sufficient, is necessary for Condition 3.3 to hold. Nevertheless, as demonstrated by
simulation, both algorithms are highly reliable.

The first algorithm, Sato’s O(K2) algorithm, needs a number of evaluations that grows
at most by K2 rather than 2K .
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Algorithm 1. Sato’s O(K2) algorithm

1. Set k = K, the number of columns in Λ.

2. Delete zero rows from Λ, and determine the number of rows of Λ, which is n.
If n < 2k + 1, the counting rule is violated, and the algorithm returns an error
(stops).

3. For all j = 1, . . . , k,

a) count the number of nonzero elements in the jth column of Λ, and denote

it as cj =
∑

w|Iw⊇{j}

Nw. If any cj < 3, the counting rule is violated, and the

algorithm returns an error (stops).

b) same as a), and determine NI1,j .

4. a) Determine J = {j∗|cj∗ = max
j

(cj)}.

b) Determine J = {j∗|NI1,j∗ = max
j

(NI1,j)}.

If |J | = 1, choose j∗ ∈ J . Otherwise, if |J | > 1, choose j∗ ∈ J at random.
If |J | = 0, choose j∗ ∈ {1, . . . , k} at random.
Delete column j∗ from Λ.

5. Set k := k − 1.
If k ≥ 1, proceed with step 2.
If k = 0, Λ most probably satisfies the counting rule.

Remark 3.5. The algorithm includes two variants, a) and b) in Steps 3. and 4.. In variant
a) the column with a maximum number of non-zero loadings is eliminated, while in variant
b) the column with the maximum number of exclusive loadings is discarded.

The second algorithm relies in the first place on the evaluation of populated non-empty
sets, Iw with Nw > 0, and included subsets, Iv ⊆ Iw. In particular for matrices of
increasing factor dimension with a large degree of sparsity, the number of populated non-
empty sets is potentially much lower than 2K − 1. Focusing on these may considerably
accelerate the evaluation of the counting rule. We formulate the following condition:

Condition 3.4. Sato’s reduced set-based counting rule: A necessary condition for a mode-
identified (sparse) factor loading matrix to satisfy the condition of Theorem 5.1 in AR56
is that for all populated non-empty sets Iw with Nw > 0, the following condition holds:∑

x|Nx>0

Nx1{(Ix
⋂

Iv )̸=∅} ≥ 2|Iv|+ 1, for all Iv ⊆ Iw with |Iw| > 0 and Nw > 0,

where Nx is the number of elements assigned to Ix.

Remark 3.6. Condition 3.4 is equivalent to Condition 3.3 if the set {1, . . . , K} is populated.

The second algorithm uses Condition 3.4.
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Algorithm 2. Sato’s set-based algorithm:

1. Set k = K, the number of columns in Λ.

2. Delete zero rows from Λ, and determine the number of rows of Λ, which is n.
If n < 2k + 1, the counting rule is violated, and the algorithm returns an error
(stops).

3. Determine the populated non-empty sets, Iw withNw > 0 and evaluate the reduced
set-based Condition 3.4.
If Condition 3.4 does not hold, the counting rule is violated, and the algorithm
returns an error (stops).
If Condition 3.4 holds and N2k−1 > 0, Λ most probably satisfies the counting rule
and the algorithm stops.

4. Determine J = {j|j ∈ I1,j, Nw > 0}. If |J | = 0, set J = {j|j = 1, . . . , K}.

Determine J ∗ =

j∗|cj∗ = max
j

(cj), cj =
∑

w|Iw⊇{j}

Nw, j ∈ J

.

If |J ∗| = 1, choose j∗ ∈ J , the column with the maximum number of non-zero
loadings, and delete column j∗ from Λ.
If |J ∗| > 1, choose (Factor) j+ with the least number of cross-loaded units, i.e.

units loaded by other factors, J + =

j+|j+ = min
j∗

 ∑
w|Iw⊃{j∗}

Nw

 , j∗ ∈ J ∗

. If

|J +| > 1 choose j+ randomly. Delete column j+ from Λ.

5. Set k := k − 1.
If k ≥ 1, proceed with step 2.
If k = 0, Λ most probably satisfies the counting rule.

Remark 3.7. In step 3, N2k−1 corresponds to the number of rows populating the set
I2k−1 = {1, . . . , k}. If the set is populated, evaluations correspond to evaluating Condition
3.3, see Remark 3.6. If k = K, Λ satisfies Condition 3.3.

4 Efficiency and illustration

In this section, we evaluate the efficiency of the proposed algorithms by simulation and
present an empirical application to illustrate the set-based identification procedure. Run-
time efficiency is of particular interest in applications which rely on Bayesian simulation
methods to obtain posterior inference.

4.1 Efficiency

Table 1 documents the run-time efficiency of Sato’s O(K2) algorithm in both variants
(see Remark 3.5) and Sato’s set-based algorithm, comparing them to the set evaluation

16



Table 1: Runtimes (in seconds) for evaluating 10,000 matrices of dimension 5K × K, with
different shares of matrices satisfying the counting rule. Evaluation by Condition 3.3 (Cond.3.3.),
Sato’s O(K2) algorithm, variant a) (A1a), and variant b) (A1b), and the set-based algorithm
(A2).

90% 50% 10%
K Cond.3.3 A1a A1b A2 Cond.3.3 A1a A1b A2 Cond.3.3 A1a A1b A2
3 0.19 0.23 0.34 1.40 0.09 0.19 0.24 1.12 0.09 0.13 0.14 0.77
4 0.32 0.30 0.45 2.52 0.17 0.23 0.30 2.02 0.10 0.14 0.17 1.21
5 0.66 0.34 0.49 3.95 0.31 0.26 0.33 2.92 0.15 0.15 0.19 1.67
6 1.68 0.40 0.59 6.00 0.67 0.30 0.39 4.24 0.22 0.16 0.20 2.36
7 3.13 0.46 0.69 8.38 1.36 0.33 0.45 5.76 0.42 0.18 0.23 3.25
8 5.91 0.53 0.81 11.46 2.85 0.38 0.52 7.85 0.75 0.20 0.24 4.56
9 11.67 0.61 0.90 15.88 6.63 0.43 0.57 10.99 1.52 0.22 0.26 6.28
10 22.08 0.69 1.03 21.57 13.75 0.51 0.65 15.18 2.99 0.23 0.29 8.65
11 48.04 0.76 1.16 29.04 26.12 0.53 0.73 20.90 5.96 0.25 0.30 12.03
12 97.00 0.89 1.30 40.11 54.42 0.60 0.83 29.85 12.05 0.28 0.34 16.48
13 200.36 1.11 1.44 54.00 111.81 0.65 0.91 40.85 26.46 0.29 0.35 22.64
14 418.52 1.22 1.61 73.43 236.18 0.69 1.02 52.95 55.49 0.31 0.42 31.10
15 868.94 1.35 1.82 97.60 482.05 0.76 1.13 69.28 122.25 0.33 0.43 42.43
16 1777.34 1.29 2.00 131.54 997.24 0.86 1.23 94.23 225.63 0.35 0.47 58.09

as required by Condition 3.3. We generate 10,000 sparse matrices of dimensions 5K ×K
for K ∈ {3, . . . , 16} for each of three scenarios, with 90%, 50% and 10% of the simulated
matrices satisfying the counting rule, respectively. Note that for matrices satisfying the
counting rule, Condition 3.3 requires evaluating all 2K − 1 sets, while for matrices not
satisfying the counting rule, evaluation stops as soon as a set violates the counting rule.
Hence, for scenarios including a high percentage of matrices satisfying the counting rule
(high-percentage scenarios), runtimes will be longer than for scenarios with a low percent-
age of matrices satisfying the counting rule (low-percentage scenarios). Both algorithms
likewise require more time for high-percentage scenarios. Table 1 shows that while for
very small K, evaluation based on Condition 3.3 (Cond.3.3) is faster than using Sato’s
O(K2) algorithm (A1a and A1b), the latter is much faster for small- to medium-sized
models. Runtimes are lower by a factor of 1,000 for the largest dimension. Sato’s set-
based algorithm (A2) is faster than the counting rule in larger settings, around K ≥ 10
in the 90% and 50% scenarios, and for K ≥ 13 in the 10% scenario. Runtimes are lower
by a factor of around 4 to 10 for the largest dimensions.

In Table 2, we extend the simulation to seven scenarios of percentages of matrices sat-
isfying the counting rule, simulating again 10,000 matrices of dimension 5K × K with
K ∈ {3, . . . , 16} for each scenario. We evaluate whether the algorithms correctly identify
matrices as satisfying the counting rule or not. Note that the only error possible is a false
positive, i.e., the algorithm fails to identify a matrix not satisfying the counting rule. This
is due to the fact that Sato’s O(K2) algorithm only evaluates a minimal number, whereas
Sato’s set-based algorithm evaluates a lower number of sets than required by Sato’s rule
(Condition 3.3).
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Table 2: Number of false positive results for 10,000 simulated matrices of dimension 5K ×K
for various percentages of matrices satisfying the counting rule, as detected by variant a) of the
O(K2) algorithm.

K 3 4 5 6 7 8 9 10 11 12 13 14 15 16
share

95% 0 0 0 0 0 0 0 0 0 0 1 0 0 1
90% 0 0 0 0 0 0 0 0 0 0 0 0 0 0
75% 0 0 0 0 0 0 0 0 0 0 0 0 0 1
50% 1 1 0 0 0 0 0 0 0 0 1 0 0 1
25% 1 1 1 0 0 0 1 0 0 0 1 0 0 1
10% 0 1 1 0 0 0 1 0 0 0 1 0 0 1
0% 1 1 1 0 0 0 1 0 0 0 1 0 0 1

Both variant b) of Sato’s O(K2) and Sato’s set-based algorithms return no false positives.
Variant a) of Sato’s O(K2) algorithm, on the other hand, returns very few false positives.
For example, in the 95% scenario there could be up to 500 false positives, whereas the
algorithm returns at most one for each K. The same holds for the lower-percentage
scenarios, where the number of false positives could be even higher.

The matrices were simulated under the assumption of linearly increasing sparsity in factor
order, which reflects usual properties of empirical estimates. Similar results were found
for exponentially increasing sparsity. For - rather unrealistic - scenarios with uniformly
very sparse patterns across factors, we observe more false positives for both algorithms.
The number is still very low even in these cases, however.

We conclude that in empirical applications, a larger share of draws violating the counting
rule indicates that the model is misspecified, for example overfitting the data.

4.2 Illustration

For the empirical illustration, we fit Model (1) to monthly log returns in exchange rates for
22 currencies against the euro, covering the period from January 2000 to December 2007,
see also Frühwirth-Schnatter et al. (2024). It seems odd to fit a static factor model to time
series usually displaying some (common) persistence. However, static independent fac-
tors correspond to the unconditional representation of independent, scaled conditional or
dynamic factors.13 Admittedly, extracted static factors may be more difficult to interpret
in a time series setting. However, we are not primarily interested in factor interpretation.
Rather, our objective is to illustrate the evaluation of factor identification based on the
proposed set identification conditions. Moreover, our estimates are directly comparable to
those presented in Frühwirth-Schnatter et al. (2024), who estimate a static factor model

13A dynamic, conditional independent process may underlie each static factor k, k = 1, . . . ,K, in Model

(1): fkt = ϕkfk,t−1 + νkt, νkt ∼ N(0,
1

1− ϕ2k
) corresponds to the unconditional or static representation

fkt ∼ N(0, 1). The persistence ϕk remains unidentified in Model (1), however.
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(a) Unconstrained (b) Sparse

Figure 2: K = 4. Panel (a) Posterior mean of CFA estimated non-zero factor loadings. Panel
(b) Posterior median of post-processed sparse MCMC output. All draws fulfill the counting rule.

imposing a GLT structure on the factor loading matrix.

We present and evaluate the output of two estimates. Both estimates are based on the
posterior output of Gibbs samplers. The first estimate is based on the output obtained
from an unconstrained rotation sampler, under a normal prior for the factor loadings,
(Aßmann et al., 2016). The Markov chain Monte Carlo (MCMC) output is then post-
processed by rotation, to optimize on a sparse representation of the factor loading matrix.
The output presented below is based on a confirmatory factor model estimate, which re-
flects the sparse representation obtained from the post-processed posterior output. The
second estimate is based on the post-processed output of a permutation sampler, un-
der a hierarchical spike-and slab prior inducing sparsity into the factor loading matrix
(West, 2003; Kaufmann and Schumacher, 2019). Both samplers and the post-processing
procedures are detailed in Kaufmann and Pape (2023).

We first analyze a model with K = 4 factors. Figure 2 displays heat plots of non-
zero factor loadings identified from the posterior output of each approach. Posterior
inference based on the output of the unconstrained rotation sampler (Panel (a)) identifies
a sparser factor loading matrix than posterior inference based on the sparse permutation
sampler (Panel (b)). Table 3 lists the set population, that is the number of rows in Λ
assigned to each of the subsets Iw ⊆ {1, 2, 3, 4}. Both factor loading matrices displayed
in Figure 2 are set-identified, as the number of populated non-empty subsets for each
(8 and 9, respectively) are larger than K = 4, and these sets span the factor space⋃
w|Nw>0

Iw = {1, . . . , 4}.
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Table 3: Set population. Model estimates for K = 4 and K = 3, non-zero loadings identi-
fied based on the post-processed MCMC output of the unconstrained rotation and the sparse
permutation sampler.

Set Elements Nw,K=4 Nw,K=3

Unconstrained Sparse Unconstrained Sparse
I0 = I0,1 = {} 2 1 2 2
I1 = I1,1 = {1} 7 3 9 4
I2 = I1,2 = {2} 3 0 3 1
I3 = I2,1 = {1, 2} 3 2 3 8
I4 = I1,3 = {3} 1 0 1 1
I5 = I2,2 = {1, 3} 4 4 4 4
I6 = I2,3 = {2, 3} 0 0 0 1
I7 = I3,1 = {1, 2, 3} 0 0 0 1
I8 = I1,4 = {4} 1 1
I9 = I2,4 = {1, 4} 1 6
I10 = I2,5 = {2, 4} 0 0
I11 = I3,2 = {1, 2, 4} 0 2
I12 = I2,6 = {3, 4} 0 0
I13 = I3,3 = {1, 3, 4} 0 3
I14 = I3,4 = {2, 3, 4} 0 1
I15 = I4,1 = {1, 2, 3, 4} 0 0

When choosing the British pound (GBP), the New Zealand dollar (NZD), Danish kroner
(DKK) and the Polish zloty (PLN), we obtain submatrices of the following form:

Λa,Panel (a) =


∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

 and Λa,Panel (b) =


∗ 0 0 0
∗ ∗ 0 ∗
∗ 0 ∗ 0
∗ 0 0 ∗


These submatrices are of full-rank (see values in Figure 2) and contain at least 4(4−1)/2 =
6 zero elements. While the factor loading matrix corresponding to Λa,Panel (a) is PLT
identified, PLT identification of the factor loading matrix corresponding to Λa,Panel (b)

may be induced by exchanging Rows 2 and 4 in Λa,Panel (b) combined with exchanging
Columns 2 and 4 of the whole factor loading matrix Λ. We conclude that both estimates
are set-based mode-identified.

However, applying Sato’sO(K2) and the set-based algorithms to the factor loading matrix
displayed in Panel (a), immediately reveals that the counting rule is violated. In Panel
(a), we see that, although n = 20 > 9 = 2K + 1, Algorithm 1 determines c4 = 2 < 3 in
the very first iteration. Table 4 displays the result based on Algorithm 2, where Nv = 2
for Iv = {4} violates Sato’s reduced set-based counting rule (Condition 3.4) also in the
first iteration. On the other hand, according to both algorithms the factor loading matrix
in Panel (b) of Figure 2 does not violate the counting rule, see the results based on
Algorithm 2 tabulated in Appendix A. Table A.1 shows that the algorithm stops at the
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Table 4: K = 4. Set-based evaluation of the factor loading matrix in Panel (a) of Figure 2.
The columns Iv = Iw evaluate the number of rows of non-zero factor loadings for column sets
Iv corresponding to populated sets |Iw| > 0, Nw > 0.

Iv = Iw

Iw {1} {2} {1, 2} {3} {1, 3} {4} {1, 4}
{1} 7 7 7 7
{2} 3 3
{1, 2} 3 3 3 3 3
{3} 1 1
{1, 3} 4 4 4 4 4
{4} 1 1
{1, 4} 1 1 1 1 1∑
x|Nx>0

Nx1{(Ix
⋂

Iv )̸=∅} 15 6 18 5 16 2 16

2|Iv|+ 1 3 3 5 3 5 3 5
✓ ✓ ✓ ✓ ✓ × ✓

second iteration. In both iterations, the column sets Iv to evaluate have to be completed
by those subsets Iv ⊂ Iw included in the non-empty, populated sets Iw. The number
of sets evaluated in the first iteration (13) is lower than the number required for full
evaluation (15) according to Condition 3.3. The number of evaluated sets in the second
iteration corresponds to an evaluation of Condition 3.3 for k = 3. The algorithm stops
and returns that Λ most probably satisfies the counting rule. Nevertheless, in Figure 2,
Panel (b), we also see that 7 out of 13 factor loadings of Factor 4 are smaller than 0.20
(in absolute terms), and it turns out that the posterior means of Factors 4 and 2 correlate
with 0.35, which is quite substantial. This suggests that a model estimated with K = 3
may improve the consistency across both posterior inferences.

Figure 3 displays the heatplots of non-zero factor loadings for a model estimated for
K = 3. If we disregard the small (in absolute terms) factor loadings in Panel (b), we
observe that results and hence factor interpretation are quite consistent across posterior
outputs. The set population is displayed in the last two columns of Table 3. Both outputs
are set-identified, as more that K = 3 sets are populated and the union over populated,
non-empty sets spans the factor space, {1, 2, 3}.

Choosing the British pound (GBP), the New Zealand dollar (NZD) and the Danish kroner
(DKK), we obtain submatrices

Λa,Panel (a) =

∗ 0 0
0 ∗ 0
0 0 ∗

 and Λa,Panel (b) =

∗ 0 0
∗ ∗ 0
0 0 ∗

 ,

which both are of full rank (see values in Figure 3) and contain more than 3 zero elements.
Both posterior outputs are set-based mode-identified.

Sato’s O(K2) algorithm now goes through three iterations for both outputs. Figure 4
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Figure 3: K = 3. Panel (a) Posterior mean of CFA estimated non-zero factor loadings. Panel
(b) Posterior median of post-processed sparse MCMC output. All draws fulfill the counting rule.

illustrates the steps for the matrix of Panel (a) in Figure 3. Factor 1, with 16 non-zero
factor loadings is eliminated first. Of the remaining two factors, Factor 1 with 6 non-
zero loadings is eliminated. The last remaining factor is identified with 5 non-zero factor
loadings. Algorithm 1 would remove factors in the same order for the loading matrix
displayed in Panel (b). The set-based algorithm removes the factors in the same order
when applied to the matrix displayed in Panel (a). For the matrix displayed in Panel (b),
the algorithm confirms that Condition 3.4 is fulfilled and stops in the first iteration (see
Table 5), given that the number of evaluations corresponds to an evaluation of Condition
3.3 for K = 3.

Overall, the evaluation of the posterior outputs suggests that a model with K = 3 is
appropriate for fitting Model 1 to these exchange rate data. Post-processing the output
of the unconstrained sampler by rotation to optimize towards a sparse factor loading
matrix yields a sparser posterior output in general. Nevertheless, the posterior factor
loading matrices and hence, the interpretation of factors, turns out to be quite consistent
across the posterior output of both approaches.
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Figure 4: K = 3, applying Algorithm 1 to the loading matrix displayed in Panel (a) of Figure
3. Loading matrices after elimination of Factor 1 (middle panel) and Factor 2 (right panel).

Table 5: K = 3, set-based evaluation of the factor loading matrix in Panel (b) of Figure 2.
The columns Iv = Iw evaluate the number of rows of non-zero factor loadings for column sets
Iv corresponding to populated sets |Iw| > 0, Nw > 0.

Iv = Iw

Iw {1}∗ {2} {1, 2} {3} {1, 3} {2, 3} {1, 2, 3}
{1} 4 4 4 4
{2} 1 1 1 1 1
{1, 2} 8 8 8 8 8 8
{3} 1 1 1 1
{1, 3} 4 4 4 4 4 4
{2, 3} 1 1 1 1 1 1
{1, 2, 3} 1 1 1 1 1 1 1∑
x|Nx>0

Nx1{(Ix
⋂

Iv )̸=∅} 17 11 19 7 20 16 20

2|Iv|+ 1 3 3 5 3 5 5 7
✓ ✓ ✓ ✓ ✓ ✓ ✓
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5 Conclusion

Following the geometric representation of factor models by Lawley and Maxwell (1971),
we present a geometric approach to identification of factor models. After reviewing some
published results relevant for and related to our discussion, we introduce the concept of
set identification. We formulate conditions to evaluate whether a (posterior) estimate
of a factor model is globally and set-based mode- or rotation-identified. In particular,
the set conditions are order-invariant, i.e. mode or rotational identification does not rely
on specific restrictions imposed on the leading K × K submatrix of the factor loading
matrix. Set identification is not sufficient for global identification, though. Therefore, we
make use of the counting rule proposed by Sato (1992), which we re-formulate in terms of
set conditions. We propose two efficient algorithms to assess global identification based
on the counting rule. Compared with the full evaluation of Sato’s counting rule, both
algorithms reduce the number and the time of evaluations considerably, in particular for
long MCMC chains of large factor models.

A comprehensive simulation study reveals that variant b) of Algorithm 1 and Algorithm
2 always correctly identify matrices violating the counting rule, whereas variant a) of
Algorithm 1 performs correctly in almost all cases. Compared with a full evaluation of
the counting rule, runtimes improve by a factor of 1,000 for Algorithm 1, and up to a
factor of 10 for Algorithm 2 in large (K > 10) dimensions. To illustrate the procedures,
we estimate a static factor model for exchange rate data, using two approaches to induce
sparsity into the factor loading matrix. While set-based mode identification is confirmed
across both posterior outputs for different settings (K = {4, 3}), global identification is
confirmed for both posterior outputs in the setting K = 3 only.

We conclude that a set-based approach to factor identification and the algorithms pro-
posed in the paper are very useful. They provide an order-invariant procedure to evaluate
identification properties of (posterior) estimates of factor models.
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Jöreskog, K. G. (1971). Statistical analysis of sets of congeneric tests. Psychometrika,
36(2):109–133.
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A Additional results

Table A.1: K = 4, Set-based evaluation of the factor loading matrix in Panel (b) of Figure
2. The factor eliminated is indicated by a ∗. Columns Iv = Iw evaluate the number of rows
with non-zero loadings of the column sets Iv corresponding to populated sets Iw, Nw > 0,
columns Iv ⊂ Iw evaluate the number of rows with non-zero loadings of additional column
subsets included in populated sets.

Iteration 1
Iv = Iw Iv ⊂ Iw

Iw {1}∗ {1, 2} {1, 3} {4} {1, 4} {1, 2, 4} {1, 3, 4} {2, 3, 4} {2} {3} {2, 3} {2, 4} {3, 4}
{1} 3 3 3 3 3 3
{1, 2} 2 2 2 2 2 2 2 2 2 2
{1, 3} 4 4 4 4 4 4 4 4 4 4
{4} 1 1 1 1 1 1 1
{1, 4} 6 6 6 6 6 6 6 6 6 6
{1, 2, 4} 2 2 2 2 2 2 2 2 2 2 2 2
{1, 3, 4} 3 3 3 3 3 3 3 3 3 3 3 3
{2, 3, 4} 1 1 1 1 1 1 1 1 1 1 1 1∑
x|Nx>0

Nx1{(Ix
⋂

Iv )̸=∅} 20 21 21 13 22 22 22 19 5 8 12 15 17

2|Iv|+ 1 3 5 5 3 5 7 7 7 3 3 5 5 5
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Iteration 2
Iv = Iw Iv ⊂ Iw

Iw {1} {2} {3}∗ {1, 3} {2, 3} {1, 2, 3} {1, 2}
{1} 1 1 1 1
{2} 4 4 4 4
{3} 7 7 7 7
{1, 3} 2 2 2 2 2 2
{2, 3} 3 3 3 3 3 3
{1, 2, 3} 1 1 1 1 1 1 1∑
x|Nx>0

Nx1{(Ix
⋂

Iv )̸=∅} 4 8 13 14 17 18 11

2|Iv|+ 1 3 3 3 5 5 7 5
✓ ✓ ✓ ✓ ✓ ✓ ✓
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