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1 Introduction

Identification in factor modelling often relates to identifying the scale of factors and the ori-
entation of the factor basis determining factor ordering and sign. The more fundamental
issue of whether the decomposition into common and idiosyncratic variation is (uniquely)
identified has eclipsed, as increasingly high-dimensional data sets have become available (N
large), and, relying on their informativeness, few factors (K small) are usually expected to
capture the bulk of data covariation. In exploratory analysis, standard non-parametric meth-
ods extract factors by principal or frequency components analysis (Stock and Watson, 2002;
Forni et al., 2005). While in these approaches factors are determined and ordered according
to the average share of covariation explained across series, the interpretation of factors gets
increasingly blurred when they are extracted from high-dimensional sets of heterogeneous
data. The situation is similar when factor extraction is based on singular value decomposi-
tion (Hoff, 2007; Chan et al., 2018). In the parametric framework, factor identification and
ordering is usually induced by imposing restrictions on the factor loading matrix. Widely
used approaches impose restrictions before estimation (Geweke and Zhou, 1996; Aguilar and
West, 2000; Bernanke et al., 2005) while more recent ones apply efficient and order-invariant
estimation, where factor identification and ordering is obtained by post-processing (Aßmann
et al., 2016; Chan et al., 2018; Kaufmann and Schumacher, 2019).

Originating in psychometrics, a primary goal in confirmatory factor analysis is to obtain,
besides factor identification, a factor interpretation. This is induced either by rotating factors
to maximize the share of factor-specific variation in specific units, see e.g. Thurstone (1935),
Cattell (1978) or Bollen (1989), or imposing a simple structure on the factor loading matrix
to determine factor interpretation, i.e. imposing zero loadings on series not expected to de-
termine or be loaded by specific factors, see e.g. Jöreskog (1969), Jennrich (1978), Jöreskog
(1979), Millsap (2001) or Mulaik (2010). These approaches have lately been applied also in
econometrics (Bai and Ng, 2013; Kose et al., 2003; Moench et al., 2013). Sparse (exploratory)
factor analysis draws on the advantage of inducing a simple structure into the factor load-
ing matrix to extract relevant factors or eventually obtain factor interpretation (West, 2003;
Lucas et al., 2006; Beyeler and Kaufmann, 2021). Recent advances in econometrics propose
estimation procedures also relying on sparse principal components (Zou et al., 2006; Despois
and Doz, 2023) or regularized estimation (Freyaldenhoven, 2023).

Identification has been discussed since the very early stages of factor modelling (Ledermann,
1937; Anderson and Rubin, 1956). Global identification dealt with the question of unique iden-
tification of the variance decomposition, related to the number of factors identifiable from the
covariance structure of the data (Shapiro, 1982). Imposing a simple structure in confirmatory
factor analysis raised similar issues (Millsap, 2001; Sato, 1992). Nowadays, sparse exploratory
factor analysis in high-dimensional data settings raises the issue of whether a sparse reduced
rank representation is (uniquely) identifiable from the data covariance (Frühwirth-Schnatter
et al., 2023; Kaufmann and Pape, 2023), given that in a factor model of potentially increasing
dimension the factor loading matrix may become increasingly sparse.

This raises anew the issue of the identification of the variance decomposition (global identifi-
cation) and factors (rotational identification), which motivates the present paper. We review
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relevant global and local identification and uniqueness conditions that have been documented
in the literature. Besides conditions derived in Anderson and Rubin (1956) and Sato (1992)
related to global identification, we will review conditions for mode or rotational identifica-
tion (Bekker, 1986; Neudecker, 1990; Bai and Wang, 2014). Our contribution relies on the
geometric representation of factor models (Lawley and Maxwell, 1971) to derive a geometric
approach to identification. Full-rank, rotational identification is based on set identification
restrictions, where only (at least) K instead of 2K − 1 sets of subspaces lying in the K-
dimensional factor space need to be populated for full-rank, rotational identification. Sato
(1992) derived a counting rule which provides a necessary condition for global identification
of the reduced-rank variance decomposition. Checking the rule needs an exponentially grow-
ing combinatorial number of evaluations (2K − 1), which becomes quickly computationally
prohibitive for factor models of increasing dimensions. Based on our geometric approach to
identification, we provide two algorithms, the O(K2) and the set-based algorithm for checking
efficiently Sato’s counting rule with a high precision.

Related to our paper, Frühwirth-Schnatter et al. (2023) present a thorough analysis of identi-
fication based on the so-called generalized lower triangular (GLT) structure, where the leading
non-zero loadings of factors (pivot elements) need to be in different rows (pivot rows). While
imposing or rotating into a GLT structure may serve the evaluation of model identification,
we will argue that imposing a GLT structure for estimation is prone to the same problem
as the widely applied positive lower triangular (PLT) identification constraints. Imposing a
GLT structure is not order-invariant, may induce an orientation of the factor basis destroying
or biasing the sparse structure underlying the data. Our approach to identification suggests
that requiring the loadings leading the pivot elements to equal zero is potentially misleading
when the purpose is to estimate a sparse factor loading matrix. Rather, it suffices to deter-
mine pivot rows or pivot series, who when re-ordered first in the data set would lead to an
unordered GLT structure in the factor loading matrix. The result of our set identification
procedure can help in determining those pivot series.

In the next section, we introduce the factor model and briefly review published results and
issues related to global and local identification, relevant for motivating our contribution.
Section 3 relies on the geometric interpretation of factor models to introduce the geometric
approach to identification. Based on these considerations, we propose two algorithms, the
O(K2) and the set-based algorithm, which allow an efficient evaluation of Sato’s counting
rule (Sato, 1992). Section 4 documents the efficiency and the performance of the algorithms
by comparing them to the plain evaluation of Sato’s rule. An application to exchange rate
returns illustrates the approach. Section 5 concludes.

2 Representation and identification

We review results concerning global and local identification of factor models published in
the literature, which are relevant for motivating and introducing the geometric approach to
identification.
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2.1 Representation

Collect observed data in vector Y = (y′1, . . . , y
′
T )

′, where each yt, t = 1, . . . , T , denotes an
N × 1 vector of variables or items yit, i = 1, . . . , N , and can be represented as

yt = Λft + ϵt, (1)

E (ftf
′
t) = IK , E (ϵtϵ

′
t) = Σϵ, Σϵ diagonal, (2)

with K << N and where ft is a K × 1 vector of latent factors, Λ = {λij|i = 1, . . . , N, j =
1, . . . , K} is the N × K factor loading matrix and ϵt is a N × 1 vector of idiosyncratic
components.1 As common variation is captured by the factor component only, Σϵ is diagonal
and E(ftϵ

′
t) = 0. Finally, identification issues we discuss in the following are independent

of distributional assumptions; therefore, we do not specify any so far. We assume that first
and second (unconditional) moments are, respectively, zero and constant, which means that
observed data in (1) follows a covariance-stationary process.

Underlying factors are usually unobserved and have to be extracted from observed data vari-
ation, Σy = E(yty

′
t):

Σy = ΛΛ′ + Σϵ (3)

Finding a solution to (3) does not only mean mathematically solving the system of N(N+1)/2
independent equations. A valid decomposition requires Σϵ to be positive definite and Σy −Σϵ

positive semi-definite and of lower-rank K.

Questions that arise are (a) does a solution exist and is it unique, which concerns global
identification; (b) is Σϵ unique, which concerns local identification, and (c) for an identified
solution, how to determine the orientation of the factor basis which includes factor order and
sign, which concerns rotational or mode identification. We briefly review results concerning
the first two issues before elaborating in more details on the last one.

2.2 Global and local identification

The most general concept of identification implies that for the decomposition into Λ and
Σϵ, there exists only a single solution. Several results have established the necessary and
sufficient conditions for identifying the factor model, some of which are discussed below.
However, a complete solution to the global identification problem has not yet been achieved,
see e.g. Millsap (2011).

Definition 1: Model (3) is globally identified (unique), if there is a (unique) Σϵ with non-
negative diagonal elements which solves (3) and yields a common covariance matrix Σy − Σϵ

that is positive-semidefinite and of reduced rank K (Anderson and Rubin, 1956, AR56).

1We assume without loss of generality an identity covariance matrix for factors, given that correlated factors

f̃t can be de-correlated by using e.g. a Cholesky decomposition of the factor covariance: E
(
f̃tf̃

′
t

)
= Σf̃ = LL′;

L−1Σf̃L
−1′ = IK . When post-multiplying Λ̃ with L, the factor model with correlated factors is observationally

equivalent to system (1). yt = Λ̃LL−1f̃t + ϵt = Λft + ϵt.
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Definition 2: Model (3) is locally unique, if in the neighbourhood of Σϵ there is no other
idiosyncratic variance matrix Σ̃ϵ that solves (3) and yields a common covariance Σy − Σ̃ϵ that
is positive-definite and of reduced rank K (Shapiro, 1985, 1989).

A sufficient condition for global uniqueness is given in Theorem 5.1 of AR56 (adjusted here
in notation)

A sufficient condition for identification of Σϵ and Λ up to multiplication on the
right by an orthogonal matrix is that if any row of Λ is deleted there remain two
disjoint submatrices of rank K.

Further theorems provide either necessary or necessary and sufficient conditions for global
identification of particular models, see also the overview in Bollen (1989, ch. 7).

Definition 1 includes stronger conditions than the criterion given by Ledermann’s bound
(Ledermann, 1937), which equates the number of equations with the number of unknowns in
(3) and yields φ(N) = (2N + 1 −

√
8N + 1)/2. The bound yields a hypothetical criterion

about the number of factors needed to obtain a reduced-rank decomposition as in (3). It
is not very useful, though, because an algebraic solution does not exclude cases where Σϵ

contains negative elements (Heywood case) or Σy − Σϵ is not positive-semidefinite.2

As regards the Ledermann bound, Shapiro (1982) showed that it is almost surely a lower
bound for the number of factors needed to obtain a reduced rank common covariance.3 Shapiro
(1985) further showed that any Σϵ which solves (3) is almost surely non-unique if K is above
the Ledermann bound and almost surely locally unique when K is at or below the Ledermann
bound. Bekker and Berge (1997) then showed that Σϵ is almost surely globally unique if K
is strictly below the Ledermann bound.

2A noteworthy insight from counting is that at least three loadings must be non-zero to identify one factor,
as a minimum of six covariances is needed to identify six unknown parameters:

Σy =

 σ2
1 σ1σ2 σ1σ3

σ2σ1 σ2
2 σ2σ3

σ3σ1 σ3σ2 σ2
3

 =

 λ21 + σ2
ϵ1 λ1λ2 λ1λ3

λ2λ1 λ22 + σ2
ϵ2 λ2λ3

λ3λ1 λ3λ2 λ23 + σ2
ϵ3

 .
Theorem 4.2 of AR56 states additional conditions for a solution satisfying a factor representation (adjusted
in notation)

A necessary and sufficient condition that Σy be a covariance matrix of a factor analysis model
with one factor is that N(N − 1)/2−N independent tetrad conditions are satisfied and

0 ≤ σkiσij
σkj

≤ σ2
i , σkj ̸= 0

for one pair (j ̸= k) for each i.

When N = 3, no tetrad conditions are left and the solution is exact: σϵ,k = σ2
k−λ2k, k = 1, . . . ,K. When N =

4, two additional tetrad conditions need to be fulfilled: σ31σ42 − σ41σ32 = 0, σ21σ34 − σ31σ24 = 0. For K > 1
conditions become more complicated (Wilson and Worcester, 1939, AR56). From these considerations, we
conclude that whether a representation (3) exists depends ultimately on characteristics of the data covariance
Σy (AR56, last paragraph of Section 5).

3That is, there are “almost no” sample covariance matrices that have factor structure with the number of
factors lower than the Ledermann bound.
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Note that AR56 do not discuss the Ledermann bound explicitly, but evaluate the number of
degrees of freedom of the (static) factor model, which is

c =
N(N + 1)

2
−N −

(
NK − K(K − 1)

2

)
=

(N −K)2 −N −K

2
. (4)

They state that an algebraic solution is possible when c ≤ 0 whereas when c > 0, there is
generally no solution. In the case of c ≤ 0, the solution may not be unique. Hence, it may be
appropriate to increase c, e.g. by imposing additional restrictions on Λ. Both confirmatory
factor analysis and sparse factor analysis increase c, albeit usually not in a fashion that results
in a unique solution. An increase in the number of factors K, on the other hand, reduces c.
In practical context, the case c > 0 seems much more relevant. As it is almost impossible to
find a parsimonious solution for a factor representation of a given sample covariance matrix
Sy, see Shapiro (1982), it is usually assumed that Sy ̸= Σy, and Σ̂y = Λ̂Λ̂′+Σ̂ϵ. Implicitly, Σ̂y

thus “satisfies some c conditions” (AR56), imposed through the structure of the factor model.
Whether Σ̂y is a plausible estimate, however, also depends on the type of model used. For
instance, a sparse factor model with many factors is much more flexible than a dense model
with fewer factors, even if the number of parameters is the same.

Sato (1992) frames global identification into the analysis of correlation, and represents regions
of unique decompositions geometrically. He qualifies and extends results of AR56, in particular
derives a necessary conditions for Theorem 5.1 of AR56 to hold (Sato, 1992, Theorem 3.3.,
adjusted here in notation):

A necessary condition for satisfying the condition of Theorem [5.1 in AR56] is
that the submatrices which consist of each q columns of ΛG have at least (2q + 1)
nonzero rows for every nonsingular G (q = 1, 2, . . . , K).

This “counting rule” (Frühwirth-Schnatter et al., 2023) encompasses Theorem 5.6 in AR56,
which states a necessary condition for global uniqueness to be that each column of ΛG (for
every non-singular matrix G) should have at least three non-zero loadings. The results prove
useful to assess global and local identification in K << N settings, where the factor loading
matrix may be sparse (West, 2003).

2.3 Rotational or mode identification

Definition 3: A locally unique model defines an equivalence class. The equivalence class
contains all solutions for which Σy − Σϵ = ΛΛ′ is positive-semidefinite and has reduced rank
K, see also Millsap (2001).

Definition 4: A solution in an equivalence class which identifies the orientation and scale of
the factor basis (rotational identification), factor position and sign, is called a mode-identified
solution.

Assuming a locally unique solution to (3) is given, it is clear that (3) is identified up to
rotation, given that ΛΛ′ can always be replaced by ΛQQ′Λ′ using an orthogonal matrix Q,
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or, if Σf̃ ̸= IK , Λ̃Σf̃ Λ̃
′ can always be replaced by Λ∗Σf∗Λ∗′ = Λ̃QQ−1Σf̃Q

−1′Q′Λ̃′ using an
arbitrary, non-singular matrix Q.

A first set of restrictions fixes the basis and the scale of the factor space. An obvious as-
sumption is to set Σf = IK , which defines an orthogonal basis of unit scale. This provides

K(K + 1)/2 restrictions. Further, assuming that every rotation Q−1ΣfQ
−1′ = IK should not

induce a change in the assumption Σf = I reduces the set of rotation matrices Q to orthogo-
nal matrices, of which K(K − 1)/2 elements are free. Therefore, to fix the orientation of the
basis, we need an additional K(K − 1)/2 restrictions.

AR56 suggest three possible sets of restrictions to obtain rotational identification, the first
two of which are typically used in exploratory factor analysis. The first set of constraints
restricts the K(K − 1)/2 upper diagonal elements of Λ to zero, i.e. λik = 0 for k > i (Geweke
and Singleton, 1981; Geweke and Zhou, 1996). The position of the zeros additionally defines
factor order. The first factor hence loads only on variable 1, while the second loads on variable
1 and 2 and so on. Factor sign is identified by requiring λkk > 0 for k = 1, . . . , K, i.e. diagonal
elements to be positive. The second set of constraints restricts Λ to satisfy Λ′Λ = D with
D diagonal (Stock and Watson, 2002). In this case, factor order is determined by requiring
that the nonzero diagonal elements in D be distinct and ordered in increasing or decreasing
order of magnitude. The last set of constraints requires that Λ′Σ−1

ϵ Λ is a diagonal matrix,
whose nonzero diagonal elements are distinct and ordered in increasing or decreasing order of
magnitude.

Other identification constraints assume Σf diagonal, albeit without unit scaling. Then, in
addition to requiring λik = 0 for k > i, the elements λkk = 1 for k = 1, . . . , K are set to
unity. This setup is used in e.g. West et al. (2001). Alternatively, Σf may be left altogether
unconstrained, which yields an unscaled oblique factor basis. For rotational identification
we then need K2 restrictions. Constraining the leading K × K submatrix of Λ, ΛK = IK
represents a possibility to achieve rotational identification, as suggested in Jöreskog (1979)
and applied in Bernanke et al. (2005). In this case, the first K variables are the factors,
i.e. they define factor position and factor scale. The restrictions imposed on the leading K
rows of Λ may alternatively also be spread across any subset of K rows in Λ. Imposing
them on the leading K rows is just a matter of convenience. However, even though these
constraints guarantee mode identification, they are not likelihood invariant with respect to
variable ordering and may lead to serious estimation issues, see e.g. Millsap (2001), Chan
et al. (2018). An illustration is given in Subsection 3. Recent advances therefore suggest to
estimate just-identified or unrestricted sparse factor models and recover mode identification
by processing the estimation output (Aßmann et al., 2016; Kaufmann and Schumacher, 2019;
Despois and Doz, 2023).

Mode-identification in a dynamic factor model4 needs essentially the same K2 number of
restrictions to identify the basis, scale and orientation of the factor space. As in the static
case, identification of factor position and sign requires additional restrictions. The analogue to
setting Σf = I is to set the covariance matrix of the factor innovations to the identity matrix,
Ση = I. This renders factors conditionally independent. Although dynamic factor processes

4Parametric extensions of (1) may include dynamic processes for ft and ϵt, ft = ϕ1ft−1+ · · ·+ϕpft−p+ ηt
and ϵit = ψ1ϵi,t−1 + · · ·+ ψqϵi,t−q + υit, respectively.
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are assumed to be diagonal in some applications (Kose et al., 2003; Otrok and Whiteman,
1998), this does not have to be imposed generally in a K << N (sparse) environment (Beyeler
and Kaufmann, 2021). A minimum of K(K−1)/2 zero restrictions on Λ and a specific sparse
structure are necessary for mode identification, see below.

Discussions in confirmatory factor analysis have shown that imposing additional constraints
on the factor loading matrix may result in specifications that lack unique mode identification
(Jennrich, 1978).5 These issues translate to high-dimensional settings in confirmatory and
exploratory factor analysis as well, where Λ may be sparse or subject to more zero restrictions
than necessary for mode identification. In particular, some results show that multiple sparse
structures may be the rule rather than the exception. Algina (1980) provided an explanation
for the counterfactual example published in Jennrich (1978) and derived first rules concerning
mode identification based on a rank condition. Bekker (1986) and Neudecker (1990) expressed
the set of constraints placed on the factor loadings matrix as Rvec(Λ) = r. Bekker (1986)
showed that a necessary and sufficient condition for mode identification requires that6

rk

(
D+

K

R(IK ⊗ Λ)

)
= K2,

and Neudecker (1990) proved that

rk

(
D+

N(Λ⊗ IN)
R

)
= NK

is equivalent to Bekker’s condition under the assumption rk (Λ) = K. More recently, Bai
and Wang (2014) extend these results to mode identification conditions for dynamic factor

5 For example, Λ, although identified when re-ordering time series, can be transformed to ΛC (again
identified when re-ordering time series), with a different loading structure below the identical first three rows
of loadings (Householder transformation):

Λ =



1.41 0 1.12 0
1.42 −0.79 0 0
0.67 0.89 −0.10 −1.09

−1.21 0 0 0.03
0.72 −1.07 0.32 −1.21
1.63 −0.81 0.31 0
0.81 −0.34 0.23 −0.41
1.03 0 0 0
0.73 0.33 −0.16 −0.77

−0.30 −0.75 0.63 0.37


→ ΛC =



1.41 0 1.12 0
1.42 −0.79 0 0
0.67 0.89 −0.10 −1.09

−0.99 0.38 −0.27 0.50
1.52 0.37 −0.69 0.55
1.67 −0.73 0.26 0.09
0.99 0 0 0
0.84 −0.35 0.24 −0.43
0.76 0.38 −0.21 −0.70
0 −0.20 0.24 1.05


,

where C = IK − 2vv′, v = null(Λ∗) and Λ∗ collecting the first rows of Λ determined by min(imax, kmax − 1),
where imax and kmax refer to the largest row and column with a non-zero element on the upper diagonal of
Λ (Here imax = 4, kmax − 1 = 3), and

v = null

 1.41 0 1.12 0
1.42 −0.79 0 0
0.67 0.89 −0.10 −1.09

 → C =


0.81 −0.34 0.24 −0.41

−0.34 0.39 0.42 −0.74
0.24 0.42 0.70 0.52

−0.41 −0.74 0.52 0.09

 .
6The matrix D+

K is the Moore-Penrose inverse of the duplication matrix DK , which transforms the half-
vectorization of a K ×K symmetric matrix X into its vectorization as DKvech(X) = vec(X).
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models, Φ(L)ft = B(L)ηt, where Φ(L), B(L) represent polynomials in the lag operator. By
defining

Φ = [Φ1, . . . ,Φp] , Φ̃ =

 Φ1
...
Φp

 , B = [B1, . . . , Bq] , B̃ =

 B1
...
Bq

 ,
and expressing restrictions as RΛvec(Λ) = rΛ, RΦvec(Φ) = rΦ, RBvec(B) = rB, the rank
condition becomes:

rk


D+

K

RΛ (IK ⊗ Λ)

RΦ

[
IK ⊗ Φ̃− Φ′ ⊗ IK

]
RB

[
IK ⊗ B̃ −B′ ⊗ Ik

]
 = K2.

Importantly, these rank conditions do not guard against singleton or spurious factor loadings
(only one non-zero factor loading in a column), leading to an indeterminacy between factor and
idiosyncratic variance.7. Hence, fulfilled rank conditions do not imply global identification.
Global identification is assumed to hold in a first place.

3 A geometric approach to identification

3.1 Full-rank mode identification: Set conditions

Rank conditions can be derived based on a geometric interpretation of factor models, where Σf

spans a possibly correlated factor basis8 and each row λi in Λ represents weights attached to
basis vectors and corresponds to cartesian coordinates in a K-dimensional space (Lawley and
Maxwell, 1971). It is useful to introduce some geometric and topological concepts. Whereas
the considered concepts can generally be defined for various fields, we are only interested
in real numbers, see e.g. Boothby (2002) and James (1976). Denote as a K-frame a set of
K independent column vectors in the RN with K < N , or, as an N × K matrix with full
column rank. The set of all K-frames in the RN is then denoted as the (real) non-compact
Stiefel manifold V (K,N).9 As the K independent column vectors in a K-frame span the K-
dimensional (real) vector space RK , we consider its k-dimensional subspaces k < K. The set
of all k-dimensional linear subspaces of RK defines the (real) Grassmann manifold Gr(k,K).

7Assume that factor K has a nonzero loading only for variable i. Then the variance for variable i can be
decomposed as

K−1∑
k=1

λ2ikσ
2
fk + λ2iK︸︷︷︸

≡1

σ2
fK + σ2

i =

K−1∑
k=1

λ2ikσ
2
fk + (σ2

fK + c) + (σ2
i − c)

for c ∈ (−σ2
fK , σ

2
i ]. The case c = −σ2

fK is inconsistent with the unity constraint and would imply that factor

K can be omitted from the analysis. Conversely, the case c = σ2
i , implies that all remaining variable i’s

variation unexplained by the first K − 1 factors is assigned to factor K.
8Σf = IK corresponds to an orthonormal factor basis.
9Note that we don’t require the columns of the K-frame to be orthogonal, as sometimes defined.
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For instance, Gr(1, 2) is the set of all lines through the origin in a plane. Finally, the set of all
orthogonal K ×K matrices is denoted as the (real) orthogonal group O(K), corresponding
to an orthogonal factor basis.

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 1: Coordinates representing five rows of two-dimensional factor loadings, of which each
of two pairs are located in a 1-dimensional subspace (blue lines). The green lines correspond to a
factor basis induced by a rotation into a GLT structure. The red stars indicate factor loadings when
additional moderate shrinkage is induced into the GLT structure.

A necessary condition for the column space of Λ to exist is that Λ has full column rank K,
such that a subset of rows of Λ, say Λa, exists that spans the RK . Equivalently, defining
the vector space W that contains all row vectors of Λ (the K-frame defined above), i.e.
W = {λi·|i = 1, . . . , N}, it must hold that W /∈ Gr(k,K) for k < K.

For example,10 Figure 1 plots the following loading matrices as coordinates:

Λ =

(
Λa

Λb

)
=


0.66 0.95

−1.05 −0.73
0.96 −1.37
0.84 0.59

−0.36 0.51

 , Λ̃ =


1.09 0.40

−1.28 0.00
0.00 −1.68
1.02 0.00
0.00 0.63

 , ΛGLT =


1.16 0.00

−1.20 0.45
−0.58 −1.57
0.96 −0.35
0.21 0.59

 , (5)

where coordinates for Λ are specified in terms of the x- and y-axis. Two pairs of row vectors in
Λ, are each located in a 1-dimensional subspace, {W1,W2} ∈ Gr(1, 2) for W1 = {λ2·, λ4·} and
W2 = {λ3·, λ5·}. Both subspaces span an orthogonal factor basisW1 ⊥ W2, indicated with blue
lines. The sparse loading matrix Λ̃ corresponds to the rotated factor basis. The example also

10We use the same numerical example as in Kaufmann and Pape (2023)
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illustrates the importance of choosing units when setting pre-defined identification restrictions
onto the factor loading matrix. Choosing either λ2· and λ4· or λ3· and λ5· as leading units Λa

in Λ combined with identification restrictions such as lower diagonal or diagonal, would fail in
identifying a second factor as each set of units is loaded by a single factor only. On the other
hand, using the first two rows of Λ to rotate into a (generalized) lower triangular structure
(Frühwirth-Schnatter et al., 2023) destroys the sparse structure of the loading matrix.11 The
green lines reflect the rotated factor basis corresponding to ΛGLT in which the factor loading
structure has been rotated into a lower triangular structure. These considerations motivate
to base inference on order-invariant estimation and identify factors, including their order and
sign (rotational identification), after estimation by processing the posterior output (Aßmann
et al., 2016; Chan et al., 2018; Kaufmann and Schumacher, 2019).

Definition 1. Subset enumeration (single index)

Consider the set I = {1, . . . , K} with K ≥ 1. The power set P(I) contains all 2K subsets of

I, which can be enumerated by Iw, where w =
K∑
i=1

2i−11{i∈Iw}. ⋄

Definition 2. Subset enumeration (double index)

Consider the set I = {1, . . . , K} with K ≥ 1. The power set P(I) contains all 2K subsets

of I, with
(
K

k

)
subsets of dimension k for 0 ≤ k ≤ K. To distinguish between subsets of

different sizes, use index k to indicate the size of the subset and index l to enumerate the
subsets of the same size. Hence, for every Ik,l ⊆ {1, . . . , K} it holds that |Ik,l| = k and

ψ(Ik,l) =
K∑
i=1

2K−i1{i∈Ik,l}, such that ψ(Ik,l) > ψ(Ik,h) for every l < h. ⋄

For instance, let I = {1, 2, 3}. Then there exist three two-elemental subsets of I, namely
I3 = {1, 2} with 21−1 + 22−1 = 1 + 2 = 3, I5 = {1, 3} with 21−1 + 23−1 = 1 + 4 = 5 and
I6 = {2, 3} with 22−1 + 23−1 = 2 + 4 = 6. It holds that I3 = I2,1, I5 = I2,2 and I6 = I2,3,
since |I3| = |I5| = |I6| = 2, and ψ(I2,1) = ψ(I3) = 23−1 + 23−2 = 4 + 2 = 6 > ψ(I2,2) =
ψ(I5) = 23−1 + 23−3 = 4 + 1 = 5 > ψ(I2,3) = ψ(I6) = 23−2 + 23−3 = 2 + 1 = 3.

Definition 3. Subspace representation of an orthogonal factor model

11Given the order non-invariance of the (generalized) lower triangular structure, inducing additional shrink-
age for factor loadings below the leading non-zero loading of each factor when estimating the model might
additionally bias the inference on the underlying factors and factor loading matrix. For example, inducing
moderate shrinkage may pull λ4· and λ5· to lie on W̃1 and W̃2, respectively:

ΛGLT =


1.16 0.00

−1.20 0.45
−0.58 −1.57
0.96 −0.35
0.21 0.59

 ,ΛGLT,shrink =


1.16 0.00

−1.20 0.45
−0.58 −1.57
1.03 0.00
0.00 0.62

 , (6)

see the coordinates in red in Figure 1. Obviously, this procedure blurs factor interpretation, biases the strong
correlation across either pair of units 2 and 4 or 3 and 5, and overemphasizes the importance of Factors 1 and
2 for, respectively, Units 4 and 5.
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For a general subspace representation of an orthogonal factor model with K factors, let

Wk ∈ Gr(1, K), Wki ⊥ Wkj , ki ̸= kj, ki, kj ∈ {1, . . . , K},

and

WIk,l =
⋃

j∈Ik,l

Wj and WIw =
⋃
j∈Iw

Wj.

Note that for IK,1 = Iw with w = 2K − 1, WIK,1
=

K⋃
j=1

Wj spans the RK . ⋄

Recall from Equation (4) that Λ has NK − K(K − 1)

2
distinctly identified parameters. As-

sume a dense Λ, mode-identified by a lower diagonal structure. We obtain λi· ∈ WIi,1 for
i ∈ {1, . . . , K − 1}, and λi ∈ WIK,1

for all i ≥ K. The equivalence class can be obtained by
PNΛPKH, where PN and PK are N -dimensional row- andK-dimensional column-permutation
matrices, respectively, and H ∈ O(K) is a rotation matrix. Sparse loading matrices, on the
other hand, imply λi ∈ WIw , where 0 ≤ |Iw| < K for (almost) every i ∈ {1, . . . , N}.

A special case obtains if {λi}Ni=1 can be partitioned into K subsets where the kth subset
{λik·}

Nk
ik=1 ∈ Wk. This is the congeneric factor model of Jöreskog (1971) with orthogonal

factors. If the factors are allowed to be correlated, the constraint Wki ⊥ Wkj can be replaced
by Wki ̸= Wkj for all ki ̸= kj, ki, kj ∈ {1, . . . , K}, which renders the model a lot more flexible.

For a generic (sparse) loadings structure, the required rank condition and rotational identifi-
cation can be checked by means of the subspaces in Definition 3. We assign each row vector
{λi}Ni=1 to the set Iw which corresponds to its non-zero loadings, λi ∈ WIw .

12 We denote by
Nw the number of rows λi· assigned to Iw, {λiw·}Nw

iw=1 ∈ WIw .

Full rank and rotation identification conditions for Λ can be defined in terms of set conditions.
In particular, full rank identification does not require all index sets to be non-empty. Rather,
it suffices that at leastK subsets be non-empty and span theK-dimensional space. Rotational
identification can be based on K elements, each one taken from a different set. We formulate
two conditions.

Definition 4. Set identification: For a (sparse) factor loading matrix Λ, assign each row
λi· to the set Iw corresponding exactly to the non-zero factor loadings, λi· ∈ WIw . Λ is set
identified, if at least K sets are non-empty and the union over these sets spans the RK space,⋃
w|Nw>0

Iw = {1, . . . , K}.

Condition 1. Full rank set identification: A set identified (sparse) factor loading matrix Λ
has full column rank, Λ ∈ V (K,N), if K rows of factor loadings, λik·, k = 1, . . . , K, each
assigned to a different set, Iwik

̸= Iwil
, k ̸= l, are set identified and form a full-rank matrix.

12As we are interested in characterizing the sparse structure of λ, we assign each row to exactly one Iw,
the one that corresponds uniquely to the non-zero loadings. Note that generically, every λi· ∈ WIw is also
element of WIx , for every Ix ⊇ Iw.
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Condition 2. Set-based mode-identification: A (sparse) factor loading matrix is mode-identified,
if K rows of factor loadings, λik·, k = 1, . . . , K, each assigned to a different set, Iwik

̸= Iwil
,

k ̸= l, are full rank set identified and include at least K(K − 1)/2 zero loading restrictions.

Remark 1. Set identification is not satisfied if there are two or more columns in Λ with the
same structure of non-zero loadings. In this case, applying a QR decomposition to these
columns reveals whether they have full rank. If they do, the QR decomposition induces a
GLT structure with additional zero constraints, while preserving the loading structure in the
remaining columns.

Remark 2. Mode identification is also obtained upon re-ordering appropriately theK elements
chosen to evaluate full rank set identification as leading units of the data set. Λ may then
be rotated into a GLT structure, inducing at least K(K − 1)/2 zero restrictions required for
mode identification.

Remark 3. Generally, more than one mode-identified sparse solution may underlie empirical
data. In these cases, the mode of interest will be determined by e.g. the most sparse rep-
resentation or the factors and their interpretation of interest. In this sense, set-based mode
identification encompasses multiple mode-identified solutions (Kaufmann and Pape, 2023).

The matrix Λ in the example given by Jennrich (1978), see also Footnote 5, can be used
to illustrate Remarks 2 and 3. Both matrices, the original matrix Λ and the Householder-
transformed matrix ΛC, can be re-ordered by suitable permutation matrices PN1 and PN2 ,
respectively, to obtain loading matrices mode-identified by GLT and PLT, respectively:

P1Λ =



1.03 0 0 0
1.42 −0.79 0 0
1.41 0 1.12 0
1.63 −0.81 0.31 0
0.67 0.89 −0.10 −1.09

−1.21 0 0 0.03
0.72 −1.07 0.32 −1.21
0.81 −0.34 0.23 −0.41
0.73 0.33 −0.16 −0.77

−0.30 −0.75 0.63 0.37


, PN2ΛC =



0.99 0 0 0
1.42 −0.79 0 0
1.41 0 1.12 0
0.67 0.89 −0.10 −1.09

−0.99 0.38 −0.27 0.50
1.52 0.37 −0.69 0.55
1.67 −0.73 0.26 0.09
0.84 −0.35 0.24 −0.43
0.76 0.38 −0.21 −0.70
0 −0.20 0.24 1.05


.

3.2 Global identification: Sato’s O(K2) algorithm

Full rank set identification of Λ does not guarantee global identification (see Subsection 2.2),
and we may refer to Sato (1992)’s counting rule to evaluate whether this necessary condition
is fulfilled. Based on the sets |Iw| > 0, we may re-frame the counting rule as a set-based
condition.

Condition 3. Sato’s set-based counting rule: A necessary condition for a mode-identified
(sparse) factor loading matrix to satisfy the condition of Theorem 5.1 in AR56 is that for all
non-empty sets Iw, the following condition holds:∑

x|Ix⊇Iw

Nx +
∑

x|Ix⊂Iw

Nx ≥ 2|Iw|+ 1, for all Iw with |Iw| > 0,

13



where Nx is the number of elements assigned to Ix.

With an increasing number of factors, a full evaluation of Condition 3 becomes computation-
ally expensive, as the number of sets to evaluate, 2K − 1, grows exponentially in K. In the
following, we propose two algorithms to evaluate Condition 3, which both need a considerably
lower number of evaluations. The outcome of the algorithms, although not sufficient, is nec-
essary for Condition 3 to hold. Nevertheless, as demonstrated by simulation, both algorithms
detect most matrices that violate the counting rule.

The first algorithm, Sato’s O(K2) algorithm, needs a number of evaluations that grows at
most by K2 rather than 2K .

Algorithm 1. Sato’s O(K2) algorithm:

1. Set k = K, the number of columns in Λ.

2. Delete zero rows from Λ, and determine the number of rows of Λ, which is n.

If n < 2k + 1, the counting rule is violated, and the algorithm returns an error (stops).

3. For all j = 1, . . . , k,

(a) count the number of nonzero elements in the jth column of Λ, and denote it as

cj =
∑

w|Iw⊇{j}

Nw. If any cj < 3, the counting rule is violated, and the algorithm

returns an error (stops).

(b) same as (a), and determine NI1,j .

4. (a) Determine J = {j∗|cj∗ = max
j

(cj)}.

(b) Determine J = {j∗|NI1,j∗ = max
j

(NI1,j)}.

If |J | = 1, choose j∗ ∈ J . Otherwise, if |J | > 1, choose j∗ ∈ J at random. If |J | = 0,
choose j∗ ∈ {1, . . . , k} at random.

Delete column j∗ from Λ.

5. Set k := k − 1.

If k ≥ 1, proceed with step 2.

If k = 0, Λ most probably satisfies the counting rule.

Remark 4. The algorithm includes two variants, a) and b) in Steps 3. and 4.. In variant a)
the column with a maximum number of non-zero loadings is eliminated, while in variant b)
the column with the maximum number of exclusive loadings is discarded.

The second algorithm relies in the first place on the evaluation of populated non-empty sets,
Iw with Nw > 0, and included subsets, Iv ⊆ Iw. In particular for matrices of increasing
factor dimension with a large degree of sparsity, the number of populated non-empty sets is
potentially quite lower than 2K−1. Focusing on these considerably accelerates the evaluation
of the counting rule. We formulate the following condition:
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Condition 4. Sato’s reduced set-based counting rule: A necessary condition for a mode-
identified (sparse) factor loading matrix to satisfy the condition of Theorem 5.1 in AR56 is
that for all populated non-empty sets Iw with Nw > 0, the following condition holds:∑

x|Ix⊇Iv

Nx +
∑

x|Ix⊂Iv

Nx ≥ 2|Iv|+ 1, for all Iv ⊆ Iw with |Iw| > 0 and Nw > 0

where Nx is the number of elements assigned to Ix.

Remark 5. Condition 4 is equivalent to Condition 3 if the set {1, . . . , K} is populated.

The second algorithm uses Condition 4.

Algorithm 2. Sato’s set-based algorithm:

1. Set k = K, the number of columns in Λ.

2. Delete zero rows from Λ, and determine the number of rows of Λ, which is n.

If n < 2k + 1, the counting rule is violated, and the algorithm returns an error (stops).

3. Determine the populated non-empty sets, Iw with Nw > 0 and evaluate the reduced
set-based Condition 4.

If Condition 4 does not hold, the counting rule is violated, and the algorithm returns
an error (stops).

4. Determine J = {j|j ∈ Iw = I1,j, Nw > 0}. If |J | = 0, set J = {j|j = 1, . . . , K}.

Determine J ∗ =

j∗|cj∗ = max
j

(cj), cj =
∑

w|Iw⊇{j}

Nw, j ∈ J

.

If |J ∗| = 1, choose j∗ ∈ J , the column with the maximum number of non-zero loadings,
and delete column j∗ from Λ.

If |J ∗| > 1, choose (Factor) j+ with the least number of cross-loaded units, i.e. units

loaded by other factors, J + =

j+|j+ = min
j∗

 ∑
w|Iw⊃{j∗}

Nw

 , j∗ ∈ J ∗

. If |J +| > 1

choose j+ randomly. Delete column j+ from Λ.

5. Set k := k − 1.

If k ≥ 1, proceed with step 2.

If k = 0, Λ most probably satisfies the counting rule.

4 Efficiency and illustration

In this section, we evaluate the efficiency of the proposed algorithm by simulation and present
an empirical application to illustrate the set-based identification procedure.
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4.1 Efficiency

Table 1 documents the run-time efficiency of Sato’s O(K2) algorithm relative to the evalu-
ation of all sets, as required in Condition 3. We generate 1,000 sparse matrices of different
dimensions 3K ×K for K ∈ {3, . . . , 16}. Table 1 shows that while for small K, K ≤ 5, full
evaluation is faster than the O(K2) algorithm, runtime quickly increases exponentially with
increasing dimension. Processing a large number of posterior draws of (sparse) factor loading
matrices (e.g. Kaufmann and Pape (2023)) may thus become computationally very costly, if
not almost infeasible, for very large models. Both proposed algorithms provide a procedure
to circumvent the exponential increase in runtime.

Table 1: Runtimes (in seconds) for evaluating 1,000 matrices of dimension 3K ×K. Evaluation of
all sets (Condition 3), and based on Sato’s O(K2) algorithm, variant a).

K Condition 3 O(K2) algorithm
3 0.0694 0.1583
4 0.1013 0.1629
5 0.1937 0.2004
6 0.3805 0.2418
7 0.6980 0.2660
8 1.5336 0.3441
9 2.8039 0.3502
10 5.2279 0.3720
11 10.0200 0.3851
12 20.1041 0.4257
13 39.1514 0.4629
14 80.9280 0.5329
15 185.6150 0.6932
16 389.1633 0.7289

Table 2 provides an overview of the number of matrices falsely identified by the algorithms to
satisfy the counting rule, out of 10,000 simulated matrices per scenario. For the scenarios we
simulate matrices withK ∈ {3, . . . , 12} columns and 3K rows, and where a varying percentage
of them satisfies the counting rule. Note that unlike in Condition 3, the algorithms check only
a (small) subset of all 2K −1 sets to consider. They may therefore identify false positives (the
counting rule holds, while in fact it does not hold), but never false negatives (the counting
rule does not hold, while in fact it does). Scenarios with a large share of matrices satisfying
the counting rule leave less room for false positives than scenarios with a low share of matrices
satisfying the counting rule. This explains why the number of errors is higher at the bottom of
the table than at the top. In the 95% scenarios, the number of false positives can go up to 500,
while in the 0% scenarios, all 10,000 matrices can produce false positives. Variant a) of the
O(K2) algorithm produces the highest number of errors. It is clearly outperformed by variant
b) of the O(K2) algorithm, which in turn is slightly outperformed by the set-based algorithm.
Another interesting observation is that as K increases, the number of false positives also first
increases, usually reaching a maximum for values of K between 6 and 8, before falling again
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to much lower values for K beyond 10. The proposed algorithms therefore produce more
precise results for scenarios where the efficiency gain in terms of computational time is also
larger, see Table 1.

Table 2: Out of 10,000 simulated matrices of dimension 3K × K, the number of false-identified
matrices satisfying the counting rule, as detected by the O(K2) algorithm with deletion of most
populated columns (A1a, variant a)), the O(K2) algorithm with deletion of column representing
most populated single-element set (A1b, variant b)), the set-based algorithm (A2).

K 3 4 5 6 7 8 9 10 11 12

95% satisfying the counting rule

A1a 0 3 2 1 1 0 0 0 0 0
A1b 0 0 0 0 1 0 1 0 0 0
A2 0 1 0 0 0 0 0 0 0 0

90% satisfying the counting rule

A1a 0 3 2 3 0 5 1 1 0 0
A1b 0 0 1 0 1 0 0 0 0 0
A2 0 0 0 0 0 2 0 0 0 0

75% satisfying the counting rule

A1a 2 9 2 7 7 7 8 2 2 1
A1b 0 0 1 1 2 3 4 1 1 0
A2 0 1 1 4 2 2 3 2 1 0

50% satisfying the counting rule

A1a 3 1 16 24 10 11 6 3 2 1
A1b 0 3 2 3 7 4 5 5 4 1
A2 0 0 3 6 7 4 5 1 2 1

25% satisfying the counting rule

A1a 4 15 13 21 31 12 14 7 3 2
A1b 0 2 3 6 4 5 4 6 1 3
A2 0 2 2 6 10 3 6 3 2 1

10% satisfying the counting rule

A1a 4 17 21 34 24 20 8 5 7 1
A1b 0 2 5 9 4 11 5 4 8 3
A2 0 2 3 13 10 3 0 3 5 0

0% satisfying the counting rule

A1a 6 12 21 28 26 23 17 13 5 3
A1b 0 2 6 6 15 7 6 10 4 6
A2 0 2 6 12 8 7 5 7 4 2

We also conclude that an increasing share of draws not fulfilling the counting rule, leads to
an increasing number of false positives identified by both algorithms, and eventually suggests
that the model is mis-specified, for example overfitting the data.
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4.2 Illustration

For the empirical illustration, we analyze monthly log returns in exchange rates for 22 cur-
rencies against the euro, covering the period from January 2000 to December 2007, see also
Frühwirth-Schnatter et al. (2024). We first analyze a model with K = 4 factors. We use
the unconstrained rotation sampler (Kaufmann and Pape, 2023) which uncovers two distinct
modes for the loading matrix. Each mode is then estimated via confirmatory factor analysis
(CFA), and the posterior means of factor loadings are presented in the left two panels of
Figure 2. Table 3 lists the number of rows in Λ that are assigned to each of the subsets
Iw ⊆ {1, 2, 3, 4}. The factor loading matrices of both modes are set-identified, as the number
of populated non-empty subsets is 7 > 4 = K in each mode, and these sets span the factor

space
⋃

w|Nw>0

Iw = {1, . . . , 4}.
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Figure 2: Loading pattern for exchange rates data, K = 4 (left two panels) and K = 3 (right two
panels), two modes each.

When choosing λ6,· ∈ WI1,1 (British pound), λ14,· ∈ WI1,2 (New Zealand dollar), λ5,· ∈ WI1,3
(Danish kroner) and λ16,· ∈ WI1,4 (Polish zloty) in Mode 1 and λ6,· ∈ WI1,1 (British pound),
λ19,· ∈ WI1,2 (Swedish kroner), λ14,· ∈ WI2,3 (New Zealand dollar) and λ22,· ∈ WI2,4 (US dollar)
in Mode 2 we obtain submatrices of the following form:

Λa,1 =


∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

 and Λa,2 =


∗ 0 0 0
0 ∗ 0 0
0 ∗ ∗ 0
∗ 0 0 ∗


These submatrices are of full-rank and contain at least 4(4 − 1)/2 = 6 zero elements. They
are both PLT identified. We conclude that both modes are set-based mode-identified.
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Table 3: K = 4: Mode-specific set population. Nw(1) and Nw(2) report the number of rows in,
respectively, Mode 1 and 2, assigned to each set. a

set elements Nw(1) Nw(2)
I0 = I0,1 = {} 2 2
I1 = I1,1 = {1} 7 6
I2 = I1,2 = {2} 3 3
I3 = I2,1 = {1, 2} 3 1
I4 = I1,3 = {3} 1 0
I5 = I2,2 = {1, 3} 4 0
I6 = I2,3 = {2, 3} 0 1
I7 = I3,1 = {1, 2, 3} 0 1
I8 = I1,4 = {4} 1 0
I9 = I2,4 = {1, 4} 1 6
I10 = I2,5 = {2, 4} 0 0
I11 = I3,2 = {1, 2, 4} 0 2
I12 = I2,6 = {3, 4} 0 0
I13 = I3,3 = {1, 3, 4} 0 0
I14 = I3,4 = {2, 3, 4} 0 0
I15 = I4,1 = {1, 2, 3, 4} 0 0
a
Note that the loadings on the fourth factor are very small,

with 0.024 for the Polish zloty, and 0.055 for the Romanian

lei.

Applying Sato’s O(K2) and the set-based algorithm to the posterior modes plotted in the left
two panels of Figure 2, immediately reveals that the counting rule is violated. In the first
iteration, while n = 20 > 9 = 2K + 1, Step 3 of both algorithms determines c4 < 3, which
violates the counting rule.13

To improve model specification, we estimated a model with K = 3. The unconstrained
rotation sampler again uncovers two distinct modes. The posterior means of mode-specific
factor loadings, estimated via CFA, are reported in the right two panels of Figure 2. Table
4 lists the number of rows assigned to subsets Iw ⊆ {1, 2, 3} for each mode. Both modes are
set-identified as the number of populated non-empty sets is 5 > 3 and the sets span the factor
space K = 3.

Choosing λ14,· ∈ WI1,1 (New Zealand dollar), λ6,· ∈ WI1,2 (British pound) and λ5,· ∈ WI1,3
(Danish kroner) in Mode 1 and λ5,· ∈ WI1,1 (Danish kroner), λ6,· ∈ WI1,2 (British pound) and
λ22,· ∈ WI2,3 (US dollar) in Mode 2, we obtain mode-specific submatrices

Λa,1 =

∗ 0 0
0 ∗ 0
0 0 ∗

 and Λa,2 =

∗ 0 0
0 ∗ 0
0 ∗ ∗

 ,

13Note that the algorithms also identify most posterior draws to violate the counting rule.
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Table 4: K = 3: Mode-specific set population. Nw(1) and Nw(2) denote the number of rows
assigned to subsets in, respectively, Mode 1 and 2.

set elements Nw(1) Nw(2)
I0 = I0,1 = {} 2 2
I1 = I1,1 = {1} 3 2
I2 = I1,2 = {2} 9 8
I3 = I2,1 = {1, 2} 3 3
I4 = I1,3 = {3} 1 0
I5 = I2,2 = {1, 3} 0 0
I6 = I2,3 = {2, 3} 4 4
I7 = I3,1 = {1, 2, 3} 0 3

which both are of full rank and contain more than 3 zero restricted loadings. The posterior
modes are set-based mode-identified.

Sato’s O(K2) algorithm now goes through three iterations, as conditions for the counting rule
to hold are never violated. Figure 3 shows the steps of variant a) of the algorithm. In the first
iteration, Factor 2 is eliminated in both modes, and in the next ones remaining Factor 1 is
successively eliminated.Likewise, the set-based algorithm successively removes factors in the
same order. Tables 5 and 6 summarize the sets considered in each iteration when evaluating,
respectively, Modes 1 and 2.
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Figure 3: Loading pattern for exchange rates data, K = 3, two modes (left panel). Loading pattern
remaining after elimination of Factor 2 (middle panel) and Factor 1 (right panel).
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Table 5: K = 3, Mode 1: Sets evaluated in the set-based algorithm. The factor eliminated is
indicated by a ∗.

Iteration 1 2 3
Iw Iw Iw

Ix {1} {2}∗ {1, 2} {3} {2, 3} {1}∗ {2} {1}∗
{1} 3 3 6 5
{2} 9 9 9 5
{1, 2} 3 3 3 3
{3} 1 1
{2, 3} 4 4 4 4∑
x|Ix⊇Iw

Nx +
∑

x|Ix⊂Iw

Nx 6 16 19 5 17 6 5 5

2|Iw|+ 1 3 3 5 3 5 3 3 3
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 6: K = 3, Mode 2: Sets evaluated in the set-based algorithm. The factor eliminated is
indicated by a ∗.

Iteration 1 2 3
Iw Iw Iw

Ix {1} {2}∗ {1, 2} {2, 3} {1, 2, 3} {3} {1, 3} {1}∗ {2} {1, 2} {1}∗
{1} 2 2 2 2 5 5 7
{2} 8 8 8 8 4 4
{1, 2} 3 3 3 3 3 3 3 3
{2, 3} 4 4 4 4 4 4
{1, 2, 3} 3 3 3 3 3 3 3∑
x|Ix⊇Iw

Nx +
∑

x|Ix⊂Iw

Nx 8 18 20 18 20 7 12 8 7 12 7

2|Iw|+ 1 3 3 5 5 7 3 5 3 3 5 3
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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5 Conclusion

Following the geometric representation of factor models by Lawley and Maxwell (1971), we
present a geometric approach to identification of factor models. We introduce the concept
of set identification, and formulate conditions to check whether full-rank, mode identification
holds. Set identification is not sufficient for global identification, however. Therefore, we make
use of the counting rule proposed by Sato (1992), which we relate to the set identification
concept. The number of sets to be checked can be greatly reduced by applying one of the two
algorithms we propose for evaluating whether the counting rule holds.

A simulation study reveals that the proposed algorithms correctly identify matrices violating
the counting rule in almost all cases and matrices satisfying the counting rule in all cases.
Runtimes are greatly reduced, in particular for matrices of large dimensions, i.e. for models
with many factors. In an application, we use an exchange rates data set, to which we apply
the unconstrained rotation sampler from Kaufmann and Pape (2023) to identify two distinct
modes, assuming K = 4. While set identification conditions hold, our algorithms indicate a
violation of the counting rule, and hence, a misspecified model. We next estimate a model
with K = 3 and find that set identification conditions as well as the counting rule hold for
both modes. We conclude that this model is correctly specified.
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Frühwirth-Schnatter, S., Hosszejni, D., and Lopes, H. F. (2024). Sparse Bayesian factor
analysis when the number of factors is unknown. Bayesian Analysis, 00:??–??

Geweke, J. and Zhou, G. (1996). Measuring the pricing error of the arbitrage pricing theory.
The Review of Financial Studies, 9:557–587.

Geweke, J. F. and Singleton, K. J. (1981). Maximum likelihood “confirmatory” factor analysis
of economic time series. International Economic Review, 22:37–54.

Hoff, P. D. (2007). Model averaging and dimension selection for the singular value decompo-
sition. Journal of the American Statistical Association, 102:674–685.

James, I. M. (1976). The Topology of Stiefel Manifolds, volume 24 of London Mathematical
Society Lecture Note Series. Cambridge University Press, Cambridge, UK.

Jennrich, R. I. (1978). Rotational Equivalence of Factor Loading Matrices with Prespecified
Values. Psychometrika, 43:421–426.
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