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Abstract

Factor modelling extracts common information from a high-dimensional data set into few common components,

where the latent factors usually explain a large share of data variation. Exploratory factor estimation induces sparsity

into the loading matrix to associate units or series with those factors most strongly loading on them, eventually de-

termining factor interpretation. The authors motivate geometrically under which circumstances it may be necessary

to consider the existence of multiple sparse factor loading matrices with similar degrees of sparsity for a given data

set. They propose two MCMC approaches for Bayesian inference and corresponding post-processing algorithms to

uncover multiple sparse representations of the factor loading matrix. They investigate both approaches in a simu-

lation study. Applying the methods to data on U.S. sectoral inflation and country-specific gross domestic product

growth series, they retrieve multiple sparse factor representations for each data set. Both approaches prove useful to

discriminate between pervasive and weaker factors.
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1. Introduction

We deal with condensing and extracting common information from high-dimensional data, using a factor model

yt

N×1

= Λ ft

(N×K)(K×1)

+ ϵt

N×1

,

where nowadays typically K << N, and a considerable share of data variation is explained by these latent factors or

the common component Λ ft,

Σy = ΛΣ fΛ
′ + Σϵ , (1)

with Σy = E(yty′t), Σ f = E( ft f ′t ) and Σϵ diagonal. Factor identification, ultimately determining factor interpretation,

has been approached by setting over- or rotational identification restrictions before estimation (Geweke and Zhou,
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1996; Aguilar and West, 2000; Bernanke et al., 2005), typically on the loading matrix. Also interested in identifying

factors, we will explore two ways of proceeding, which do not call for over-identifying restrictions. The first one

extracts factors under a generic or just-identified specification (Λ unrestricted, Σ f = IK) and rotates ex-post towards

a factor identifying specification (Aßmann et al., 2016; Chan et al., 2018; Aßmann et al., 2023). The second one

induces or estimates an association of units or data series with those factors most strongly determining them (West,

2003; Lucas et al., 2006; Kaufmann and Schumacher, 2019). Under both approaches we seek to determine a sparse

factor loading matrix, where the non-zero loadings ultimately yield a factor interpretation. The interesting issue

arising here is whether the induced or estimated sparse structure is unique or whether there may be multiple sparse

factor loading matrices, i.e. factor representations, where each explains approximately the same share of data variation

and results in potentially different factor interpretations.

Generally, identification conditions developed in the literature do not rule out local non-uniqueness, i.e. multi-

ple sparse loading matrices that represent different sparse factor models, fitting a given data set potentially similarly

well. We motivate geometrically when different sparse loading matrices may arise and lead potentially to different

interpretations of underlying factors. We contribute in various dimensions to exploratory, data-driven factor analy-

sis. Both procedures we explore estimate factor models based on order-invariant, just-identified Bayesian posterior

inference. Local or rotational identification is obtained by processing the posterior output with algorithms closely

related to machine learning procedures, potentially uncovering multiple sparse structures in Λ. Applications to large

panels of country-specific gross domestic product (GDP) and U.S. sectoral inflation rates reveal that multiple sparse

structures can be uncovered when weak factors underly data variation, a feature discussed in psychometrics (Briggs

and MacCallum, 2003) as well as in the econometrics literature, see Freyaldenhoven (2022) and references therein.

In Section 2 we present the model specification and introduce a geometric interpretation of factor models. We

motivate why multiple sparse representations may arise. Section 3 outlines the Bayesian framework and the two ap-

proaches, based on different priors, to uncover multiple sparse representations. In Section 4, we describe in detail

the post-processing algorithms, the first based on optimal rotation and the second on posterior clustering, sorting out

factor draws into typical groups of joint factor draws. In Section 5, an extensive simulation study demonstrates the

good properties of both approaches, based on scenarios also including pervasive factors, that is factors that load on

most and the same units across various sparse representations. Section 6 reports the applications on U.S. monthly

sectoral inflation rates and yearly GDP growth rates of countries listed in the Penn World Table. For both datasets,

we are able to identify multiple sparse representations. We extract pervasive factors as well as some weaker factors,

each identifiable jointly with the pervasive ones, but too weak to be jointly identifiable all together. Section 7 con-

cludes. Appendices A to D contain additional details and results concerning posterior sampling, post-processing, the

simulation study and the oracle property of the post-processing procedures when an overfitting number of factors is

estimated, respectively.
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2. (Non-)Unique sparse factor representation

2.1. Specification

Consider a vector of observable data Y = (y′1, . . . , y
′
T )′. Each yt, t = 1, . . . ,T , denotes an N × 1 vector of variables

yit, i, . . . ,N, and can be represented as

yt = Λ ft + ϵt, ϵt ∼ i.i.d. N (0,Σϵ) , (2)

E
(
ft f ′t

)
= IK , Σϵ diagonal with elements σ2

i , (3)

with K << N and where ft is a K × 1 vector of latent factors, Λ = {λi j|i = 1, . . . ,N, j = 1, . . . ,K} is the N × K

factor loading matrix and ϵt is an N × 1 vector of idiosyncratic components. We assume without loss of generality an

identity covariance matrix for factors, given that correlated factors f̃t can be de-correlated by using e.g. a Cholesky

decomposition of the factor covariance: E
(

f̃t f̃ ′t
)
= Σ f̃ = LL′ and L−1Σ f̃ L−1′ = IK . When post-multiplying Λ̃ with L,

the factor model with correlated factors is observationally equivalent to system (2): yt = Λ̃LL−1 f̃t + ϵt = Λ ft + ϵt.

As common variation is captured by the factor component only, Σϵ is diagonal and E( ftϵ′t ) = 0. Although we

allow for extensions in the applications, we abstract from a dynamic representation of factors and idiosyncratic errors,

as the variance of components in (2) can be interpreted in terms of unconditional variances. We assume that the first

and second (unconditional) moments are, respectively, zero and constant, which implies yt to follow a covariance-

stationary process.

In (2), underlying factors are usually unobserved, and we rely on observed data variation, Σy = E(yty′t), to extract

the common component:

Σy = ΛΛ
′ + Σϵ . (4)

Finding a solution to (4) does not only mean mathematically solving the system of N(N+1)/2 independent equations.

A valid decomposition requires Σϵ to be positive definite and Σy − Σϵ positive semi-definite and of lower-rank K

(Anderson and Rubin, 1956). Questions that arise are (1) does a solution exist and is it unique, which concerns global

identification; (2) is Σϵ unique, which concerns local identification, and (3) for an identified solution, how to determine

the orientation of the factor basis and factor order, which concerns rotational or mode identification. In the following,

we deal with local and rotational identification.

In particular we are interested in identifying factors or an orientation of the factor basis which induce a sparse factor

loading matrix. This is achieved by specifying a sparse prior distribution on factor loadings or shrinking loadings to

zero after an optimal rotation of the factor basis. Thus, we obtain a sparse factor loading matrix by statistical inference.

Although the common components of various sparse representations may account for a similar share in data variation,

solutions may lead to different elements in Σϵ , which would entail local non-uniqueness. Finding different sparse

representations by orthogonal rotation deals with rotational or mode identification. We do not provide an in-depth

discussion of identification in the present paper. The interested reader may refer to Kaufmann and Pape (2023), where
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we summarize the most important results and provide a geometric approach to identification, including an algorithm

to assess the identification properties of a factor model.

2.2. A geometric interpretation of factor models

To motivate the possibility of multiple sparse factor decompositions, we use the geometric representation of a

factor model, where Σ f = IK spans an orthonormal factor basis, and each row λi· in Λ represents weights attached to

basis vectors and corresponds to cartesian coordinates in a K-dimensional space (Lawley and Maxwell, 1971).

For the following exposition it is useful to introduce some geometric and topological concepts. First, denote as

a K-frame a set of K independent column vectors in RN with K < N or a N × K matrix with full column rank. The

set of all K-frames in RN is then denoted as the (real) non-compact Stiefel manifold V(K,N). Note that the column

vectors of the K-frame are not required to be orthogonal, as sometimes defined, like in Chan et al. (2018).

As the K independent column vectors in a K-frame span the K-dimensional (real) vector space RK , we may

consider its k-dimensional subspaces for k < K. The set of all k-dimensional linear subspaces of RK is then denoted

as the (real) Grassmann manifold Gr(k,K). For instance, Gr(1, 2) is the set of all lines through the origin in a plane.

Last, the set of all orthogonal K × K matrices is denoted as the (real) orthogonal group O(K), corresponding to an

orthogonal factor basis.

Figure 1: Five factor loadings, four of which are located in 1-dimensional subspaces.
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For example, Figure 1 plots the following loading matrices as coordinates:

Λ =



0.66 0.95

−1.05 −0.73

0.96 −1.37

0.84 0.59

−0.36 0.51


, Λ̃ =



1.09 0.40

−1.28 0.00

0.00 −1.68

1.02 0.00

0.00 0.63


, (5)

where coordinates for Λ are specified in terms of the x- and y-axis. We see that there are two pairs of row vectors

in Λ, each located in a 1-dimensional subspace, W1 ∈ Gr(1, 2) for λ2· and λ4· and W2 ∈ Gr(1, 2) for λ3· and λ5·.

Both subspaces span an orthogonal factor basis W1 ⊥ W2, indicated with blue lines. The sparse loading matrix Λ̃

corresponds to the rotated factor basis. The example also illustrates the importance of choosing units when setting pre-

defined identification restrictions onto the factor loading matrix. Choosing either λ2· and λ4· or λ3· and λ5· as leading

units in Λ combined with identification restrictions such as lower diagonal or diagonal, would fail in identifying a

second factor as each set of units is loaded by a single factor only. This motivates to base inference on order-invariant

estimation and identify factors, including their order and sign, by processing the posterior output, as outlined in the

next section.

Figure 2: Two exact sparse representations (left) and two “noisy” sparse representations (right) in a two-factor model. Rotation
based on the Varimax criterion and based on least square minimization.
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Multiple sparse representations may underlie the data, as Figure (2) illustrates. The left panel shows a model with

K = 2 factors. It turns out that we can define multiple sparse representations of Λ. Each combination of two of the

blue lines Wki , with Wki ∈ Gr(1, 2), ki = 1, . . . , 4, spans an orthogonal factor basis. The two combinations are either
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W1 ⊥ W2 or W3 ⊥ W4, such that either λi· ∈ W1(W3) or λi· ∈ W2(W4) for a first (second) subset of loadings. We

additionally show the solutions of rotations based on the Varimax criterion and least square minimization as green and

red lines, respectively. Both fail to find any sparse representation. Instead, they result in slightly different orthogonal

factor bases spanned in between the sparse representations.

A more realistic scenario is one of only approximate sparse structures underlying the data, where all factor loadings

would be non-zero under unrestricted estimation. Nonetheless, multiple representations may underly data where

a number of factor loadings may be large and non-zero and the remaining ones may be small and close to zero.

The right panel of Figure 2 gives an illustration of a “noisy” bimodal representation. Loading vectors that were

previously part of the zero space W{} are now located near, but not exactly at the origin, whereas the loading vectors

that previously were elements of one of the one-dimensional subspaces Wki are now only closely located to them. An

approach designed to uncover a sparse representation may end up with either set of orthogonal factors plotted in blue.

The results of a Varimax optimization and least squares minimization span again a factor basis lying in-between the

bases spanning a sparse representation.

In practical applications, this scenario may be relevant in particular for data driven by pervasive factors with

nonzero loadings on almost all variables and local or group-specific factors, which load only on specific subsets of

variables. Each mode or sparse representation would relate to a different set of weak factors, determining potentially

different interpretations of weak factors. With many factor loadings at or near zero, Figure 2 may hence be understood

as representing two pairs of weak or local factors.

3. Bayesian inference

As motivated in the previous subsection, multiple modes or sparse representations may arise in exploratory sparse

factor analysis where informed by the data, elements of Λ are set endogenously to zero. We propose two Bayesian ap-

proaches, based on different priors, to obtain a posterior inference of the model. In view of the discussion in Subsection

2.2, where we illustrated the difficulty of selecting K leading units for pre-imposing factor- and rotation-identifying

restrictions, both approaches are based on order-invariant, unconstrained Markov chain Monte Carlo (MCMC) sam-

plers. Factor identification, including factor order and sign, then is obtained by processing the posterior MCMC

output.

The approaches differ in terms of their computational involvement at each stage of posterior inference, either when

sampling or post-processing. The first approach based on a normal prior for factor loadings and an unconstrained

rotation sampler (Aßmann et al., 2016, 2023) needs a careful design of a posterior optimization algorithm to find

multiple sparse representations of the factor loading matrix of (nearly) equal sparsity degree. The second approach

builds on a spike and slab prior (Mitchell and Beauchamp, 1988; George and McCulloch, 1997; West, 2003) and

uses a sparse permutation sampler to obtain a sample from the multimodal posterior distribution (Kaufmann and

Schumacher, 2019). Although the sparse prior induces sparsity into the factor loading matrix, upon convergence to a

mode the sampler looses entropy, making it very unlikely to visit other modes or sparse representations (Titsias and
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Lázaro-Gredilla, 2011; Bengio et al., 2013). To circumvent the issue, we disturb the sampler after convergence by

multiple random rotations and run multiple chains in parallel to detect different sparse modes.

3.1. Bayesian specification

The first building block of the Bayesian framework includes the specification of prior distributions, where in both

approaches the prior specification for factor loadings is a standard one used in Bayesian (sparse) factor analysis. The

first approach performs posterior inference based on an unconstrained normal prior distribution for the factor loadings

π
(
λi j

)
= N(0, τ0). (6)

The second approach induces a sparse Λ by working with a hierarchical spike and slab prior (West, 2003; Carvalho

et al., 2008):

π(λi j|βi j, τ j) = (1 − βi j)δ0(λi j) + βi jN(0, τ j), (7)

π(βi j|ρ j) = (1 − ρ j)δ0(βi j) + ρ jB(ab, a(1 − b)), (8)

and

π(ρ j) = B(r0s0, r0(1 − s0)), (9)

where δ0 represents the Dirac Delta function assigning all probability mass to zero and B(uv, u(1 − v)) is the beta

distribution with mean v and u ruling the precision. For τ j, we assume an inverse Gamma prior distribution IG(g0,G0).

Note that both prior specifications are invariant with respect to factor and sign permutation, and the normal prior is

also invariant with respect to factor rotation. This allows us to explore the unconstrained posterior distribution.

We introduce the following notation to lay out compactly the second building block, the likelihood, and the

posterior inference. We stack all observations of variables yt into y = (y′1, . . . , y
′
T )′ and all observations of unobserved

factors into f = ( f ′1 , . . . , f ′T )′. Model parameters and hyperparameters are gathered in θ = {Λ,Σϵ , ϑ}, where ϑ collects

all hyperparameters of the hierarchical prior (7)-(9), ϑ =
{
βi j, ρ j, τ j|i = 1, . . . ,N, j = 1, . . . ,K

}
.

The complete data likelihood factorizes as

L(y| f , θ) =
T∏

t=1

π(yt | ft, θ), (10)

with normal observation density

π(yt | ft, θ) =
1

√
2π|Σϵ |1/2

exp
{
−

1
2

(yt − Λ ft)′ Σ−1
ϵ (yt − Λ ft)

}
.

To complete the prior specification, we assume a normal prior distribution for factors π ( f ) = N (0,F0), F0 = IKT .
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3.2. Posterior inference

Although the joint posterior distribution

π ( f , θ|y) = L(y| f , θ)π (θ|ϑ) π (ϑ) (11)

is not available in closed form, we can derive full conditional distributions and rely on a Gibbs sampling scheme. To

obtain draws from the posterior distribution, we sample repeatedly from

1. π (Λ|y, f ,Σϵ). Both the normal and the sparse prior are conditionally conjugate. Therefore, the posterior dis-

tributions will also be, respectively, normal and sparse. Under the sparse prior, we additionally update the

hyperparameters and draw from π (ϑ|Λ). See Appendix A.1 for the derivation of posterior moments.

2. π ( f |y, θ) = N(f,F) with moments

F =
(
Λ′

(
IT ⊗ Σ

−1
ϵ

)
Λ + F−1

0

)−1
, f = F

(
Λ′

(
IT ⊗ Σ

−1
ϵ

)
y
)
,

with Λ = IT ⊗ Λ.

3. π (Σϵ |y, f ,Λ) =
N∏

i=1

IG(si,Si) with moments

si = s + T/2, Si = S + .5
T∑

t=1

(yit − λi· ft)2, and s,S prior shape and scale, respectively.

To explore the full unconstrained posterior distribution, depending on the sampler each iteration is terminated by

either a random rotation or a random permutation of factors and factor-specific parameters. Step 4. in either scheme

consists in

4.U. (Unconstrained rotation) Random rotation of the factor loadings and factors: Draw an orthogonal matrix

D ∈ RK×K , distributed with Haar measure, i.e., uniformly on the K-dimensional hypersphere (Mezzadri, 2007),

and rotate factors and factor loadings:

f := (IT ⊗ D) f ,

Λ := ΛD′. (12)

Enforcing rotation accelerates the exploration of the posterior distribution, especially in high-dimensional se-

tups.

4.S. (Sparse permutation) Random permutation of factor position and sign: First, randomly draw a permutation

ϱ = (ϱ1, . . . , ϱK) of {1, . . .K} and apply it to factors, factor loadings and hyperparameters

f := ϱ( f ) =
{
fϱ jt | j = 1, . . . ,K, t = 1, . . . ,T

}
,

{Λ, ϑ} := ϱ (Λ, ϑ) =
{
λiϱ j , βiϱ j , ρϱ j , τϱ j |i = 1, . . . ,N, j = 1, . . . ,K

}
. (13)
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Second, draw K independent Rademacher distributed random variables. If the kth variable takes the value −1,

switch the sign of the kth factor and corresponding loadings. Implementing this step, the output of the sparse

permutation sampler will display 2K K! modes.

The unconstrained rotation sampler explores the unconstrained posterior distribution, and generally one MCMC

chain or shorter parallel chains are run to obtain a sample from the posterior distribution. As mentioned earlier, the

sparse permutation sampler may converge to a sparse representation and stay there, making it difficult for the sampler

to visit other sparse representations. To enforce the sampler to visit additional potential sparse representations, we

proceed as follows:

1. Simulate a first chain:

Initialize the sampler, retain M1 draws from the posterior after convergence.

2. Disturb and simulate R − 1 chains in parallel:

Initialize R − 1 parallel MCMC chains, each by a random orthonormal rotation of a factor loading draw of the

first chain, Λ(0),r = Λ(m)D(r), m ∈ {1, . . . ,M1}. Retain Mr values after convergence.

3. Collect all M =
R∑

r=1

Mr posterior draws.

Remark 1. To couple the output of parallel MCMC chains with a fixed number of burn-in and Mr of retained draws,
we need to ensure that chains have converged, and we have retained enough draws to perform posterior inference.
Assessing convergence in a high-dimensional, latent-variable model is not trivial, if we disregard the usual trace and
autocorrelation plots or convergence diagnostics for single parameter values. It is even more involved if we (have to)
take into consideration random factor and sign permutation applied at the end of each iteration. We suggest using a
statistic to assess convergence of both the unidentified and identified posterior output, based on a sign-independent
model parameter. We use the Jaccard matching index between the first draw of a (sub-)chain and all following draws,
based on an indicator matrix for non-zero loadings, obtained by evaluating β(m)

i j for each draw m. The procedure is de-
tailed in Appendix A.2 and illustrated for the MCMC output obtained for U.S. sectoral inflation rates (see Subsection
6.2). The alternative of implementing an exact procedure (Jacob et al., 2020) in this high-dimensional, latent-variable
model is non-trivial if at all feasible. Random permutation of factors and factor sign at the end of each iteration make
the problem even more difficult.

4. Posterior processing: Multiple mode identification

Next, we describe the mode identification procedures using the output of the unconstrained rotation and sparse

permutation sampler, based on the geometric representation motivated in Subsection 2.2.

4.1. Mode identification using the output of the unconstrained rotation sampler

To obtain a sample from the posterior distribution of Λ, we first post-process the unconstrained sampler’s output

with the weighted orthogonal Procrustes (WOP) procedure to orient all draws towards a common factor basis, see

Aßmann et al. (2016). After this step, the posterior distribution is identified up to a final orthogonal rotation H∗,

H∗H′∗ = IK . When appropriately oriented, the matrix H∗ will identify a sparse structure in Λ. In this subsection, we

discuss an optimization approach to determine H∗.

9



Highest posterior density (HPD) K-dimensional hyperellipsoids, constructed for each 1×K row of factor loadings

λi· in Λ, provide the basis for the optimization. The objective is to rotate the factor basis in such a way that sparse

subspaces spanned by as few basis axes as possible will intersect with each of the hyperellipsoids, inducing a sparse

representation for Λ. For non-elliptical posterior distributions, the corresponding K-dimensional HPD regions are

represented by shells in K-dimensional space, see Hyndman (1996). In the following, we stick to the case of elliptical

posterior distributions.

Definition 1. Parameterization of a hyperellipsoid
A K-dimensional hyperellipsoid is defined by three parameters: its center c ∈ RK , its orientation H ∈ O(K) and

its radii, or half-diameters r ∈ RK .

The orientation H can be replaced by a vector γ ∈ RP, where P =
(
K
2

)
, which contains the rotation angles from a

Givens decomposition of H, see Appendix B.1. ⋄

According to Definition 1, the parameters of the unit circle centered at the origin of the R2 space are c = (0, 0)′,

H = I2 or γ = 0 and r = (1, 1)′.

All parameters characterizing the K-dimensional HPD hyperellipsoid for λi· can be inferred from the posterior

sample. The center is estimated as ĉi = 1/M
M∑

m=1

λ(m)
i·
′
. To obtain an estimate for the orientation Hi, we first compute

an estimate of the covariance matrix of λi·, Ψ̂i = 1/M
M∑

m=1

λ(m)
i·
′
λ(m)

i· − ĉiĉ′i . The spectral decomposition Ψ̂i = ĤiŴiĤ′i

yields Ĥi, an orthogonal matrix, and Ŵi, a diagonal matrix with eigenvalues ŵi,1, . . . , ŵi,K on the diagonal. The Givens

decomposition of Ĥi yields the Givens rotation angles γ̂i = (γ̂i,1, . . . , γ̂i,P)′, where P is the number of axis pairs

involved. To obtain estimates for the radii ri = (ri,1, . . . , ri,K)′, we work with demeaned and decorrelated draws. We

demean the draws λ(m)
i· to obtain λ(m),dem

i· = λ(m)
i· − ĉ′i . Next, we decorrelate the demeaned draws to obtain λ(m),dec

i· =

λ(m),dem
i· Ĥi. Finally, we standardize the demeaned and decorrelated draws to obtain λ(m),stand

i· = λ(m),dem
i· ĤiŴ

− 1
2

i . Denote

the empirical (1 − α) quantile of ∥λ(m),stand
i· ∥2 by q1−α, where ∥ · ∥2 denotes the Euclidean norm, and estimate the radii

of the ith hyperellipsoid as r̂i,k = q1−α
√

ŵi,k. Note that for convenience, we omit the hats on HPD parameter estimates

in the following.

Definition 2. Relation between a point and a hyperellipsoid in the RK space
For general K ∈ N, it holds that any point x ∈ RK lies inside the K-dimensional hyperellipsoid parameterized as

in Definition 1, if and only if

∥(x − c)′HR−1∥2 < 1, where R = diag(r1, . . . , rK). ⋄

Figure 3 illustrates how to re-construct a two-dimensional ellipsoid λi· with the three parameters. In the first row,

the first panel shows the unit circle that consists of the set of points
{
xi|x′i xi = 1

}
. In the second panel, the unit circle

is expanded to an ellipse by scaling the points along the kth dimension with radius ri,k to Rixi. In the third panel, the

ellipse has been rotated by Hi to HiRixi. Eventually, the ellipse is shifted, translating all of its points to HiRixi+ci (First

panel in the second row). The procedure is generically applicable to higher-dimensional ellipsoids, see Appendix B.2

for a K = 3-dimensional example.
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Figure 3: 95% highest posterior density ellipsoid for K = 2, built from the unit circle (first row, first panel), which is first expanded
(first row, second panel), then rotated (first row, third panel), and eventually translated (second row, first panel). A possible rotation
of the coordinate system is shown in the second panel of the second row. The third panel of the second row shows a different
hyperellipsoid, which intersects with both axes after rotating the coordinate system.
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To identify a sparse representation, we look for a rotation matrix H∗, such that as many ellipsoids as possible will

intersect with low-dimensional subspaces of the space spanned by H∗. The second panel in the second row of Figure

3 illustrates a rotation of the axes to the right by an angle that causes the hyperellipsoid to intersect with the y-axis.

Both axes are one-dimensional subspaces of the R2 space. The intersection implies that, to represent the ellipse, a

nonzero loading is necessary only for the second factor, while the loading for the first factor can be set to zero.

Definition 3. Sparsity indicator matrix
Let the matrix ∆ ∈ RN×K represent the sparse pattern in Λ, indicating non-zero coordinates of the subspaces

ellipsoid i intersects with, i.e. δik = 1 if λik , 0, and zero otherwise. Moreover, let δi· denote the ith row of matrix ∆. ⋄

Note that if the ith hyperellipsoid includes the origin, the hyperellipsoid intersects with the zero-dimensional space,

and hence, all loadings on variable i can be set to zero. That is, δik = 0 for all k ∈ {1, . . . ,K}. This also holds under

arbitrary rotations H of the factor basis. Accordingly, if the ith hyperellipsoid intersects with the kth axis only, loadings

of variable i can be set to zero except the kth one, i.e., δik = 1 and δi j = 0 for all j ∈ {1, . . . , k − 1, k + 1, . . . ,K} (see
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Figure 3, second panel in the second row). If H∗ causes the hyperellipsoid to overlap with different subsets, without

including their intersection, the sparse representation is not unique. The third panel in the second row illustrates this

situation. The ellipse intersects each axis, without including the origin. In this case, we can set either δi· = (1, 0) or

δi· = (0, 1).

Definition 4. Indexing k-elemental subsets of the set {1, . . . ,K}
Consider the set K = {1, . . . ,K} with K ≥ 1 and 0 ≤ k ≤ K. Denote as the jth k-elemental subset of K the set

Kk, j ⊆ {1, . . . ,K} with
∣∣∣Kk, j

∣∣∣ = k and ψ j =

K∑
i=1

2K−iI{i∈Kk, j}, such that ψ j > ψh for every j < h. ⋄

For instance, consider K = 3, K = {1, 2, 3}, and k = 2. The ordered 2-elemental subsets are K2,1 = {1, 2} with

ψ1 = 6, K2,2 = {1, 3} with ψ2 = 5, and K2,3 = {2, 3} with ψ3 = 3.

Definition 5. Subspace and rotated subspace
Let K ≥ 1 and 0 ≤ k ≤ K, and let the K × K matrix S (k, j) contain the standard vectors corresponding to the axes

indicated by Kk, j and zero vectors elsewhere. Then S (k, j) spans the jth k-dimensional subspace of the K-dimensional
space.

Let H ∈ O(K) be a rotation matrix. Then HS (k, j) spans the rotated jth k-dimensional subspace of the K-dimensional
space. ⋄

For instance, for K = 3, the matrix that spans the first subspace of dimension k = 2 corresponds to S (2,1) =
1 0 0

0 1 0

0 0 0

, with HS (2, j) ∈ Gr(2, 3), H ∈ O(3). Note that for 2 ≤ k ≤ K − 1, Definition 5 is redundant as the different

kth-dimensional subspaces can be spanned by S (k,1) under appropriate rotation H. However, we need to consider all

different
(
K
k

)
elements as the diagonal elements of S (k, j) will determine δi·.

Definition 6. Points in subspaces and rotated subspaces
Let s(k, j) be a K × 1 vector of nonzero scaling factors for S (k, j), such that x = S (k, j)s(k, j) is a point within the

subspace spanned by S (k, j).
Let H ∈ O(K) be a rotation matrix. Then x = H(S (k, j)s(k, j)) is a point within the rotated subspace spanned by

HS (k, j). ⋄

Definition 7. Optimal scaling vector
Conditional on a rotation H and S (ki, ji), we minimize the Mahalanobis distance between xi = H(S (ki, ji)s(ki, ji),i) and

the center of the ith hyperellipsoid ci

ℓki, ji,i(S (ki, ji), s(ki, ji),i,H) = ∥(H(S (ki, ji)s(ki, ji),i) − ci)′HiR−1
i ∥2,

to obtain the optimal scaling vector

sopt
(ki, ji),i

(H) = arg min
s(ki , ji ),i

{
ℓki, ji,i(S (ki, ji), s(ki, ji),i,H)

}
. ⋄

If sopt
(ki, ji),i

(H) causes xi to lie within the ith hyperellipsoid (see Definition 2), the ith hyperellipsoid intersects with

the rotated subspace spanned by HS (ki, ji). When this is the case, λi· falls into the corresponding subspace S (ki, ji) and

we set δi· equal to the diagonal elements of S (ki, ji), δi· = diag(S (ki, ji)).
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We optimize H to obtain a minimum number of nonzero elements in ∆. This is achieved when a maximum number

of hyperellipsoids intersect with low-dimensional subspaces, i.e. ki should be as small as possible. When evaluating

sparsity under some rotation H, we therefore start with low-dimensional subspaces.

Figure 4: 95% highest posterior density ellipsoids for eight row vectors λi· with K = 2 (first panel), first proposed axis rotation
(second panel), and second proposed axis rotation (third panel).
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Hyperellipsoids, rotation choice 1
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Hyperellipsoids, rotation choice 2
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For example, consider the eight hyperellipsoids shown in the first panel of Figure 4. A rotation of the axes to the

right (left) by 35 (12) degrees causes five (three) hyperellipsoids to intersect with one of the rotated axes (highlighted

in yellow). The first (second) rotation yields δi· = (1, 0) for two (two) variables, δi· = (0, 1) for three (one) variable(s),

and δi· = (1, 1) for three (five) variables. The first rotation induces the sparsest representation.

With these topological considerations at hand, we define the loss function to minimize:

L(H) =
∑
i∈H

ℓ∗i (H) + ζ
∑
i∈H

K∑
k=1

δik(H). (14)

The solution yields the optimal rotation

H∗ = arg min
H
{L(H)}

Note that only a subset H ⊆ {1, . . . ,N} of units contribute to the loss function. All loadings of those units with

hyperellipsoids including the origin are set to zero, remain zero under any rotation H. Therefore δi· = 0 for all these

units, see also the remarks after Definition 3. The first term in Equation (14) captures the contribution of the nonzero

rows determined for Λ:

ℓ∗i (H) = ℓki, ji,i(S
∗
i (H), s∗i (H),H) for every i ∈ H, (15)

where S ∗i (H) spans a low-dimensional subspace, and where conditional on S ∗i (H), s∗i (H) = sopt
(ki, ji),i

(H) (Definition 7).

The second term in Equation (14) acts as penalty by scaling the number of nonzero elements in ∆ determined

under rotation H. In simulations and applications, we used ζ = 10.
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For optimizing, it is convenient to express H as a function of the
(
K
2

)
Givens rotation angles γ, and optimizing

with respect to γ, see Appendix B.1. A starting value for H may be chosen randomly or set empirically by e.g. a

Varimax rotation of 1/M
M∑

m=1

Λ(m). We use the following algorithm to determine ∆ and evaluate the loss function until

convergence:

1. Set i = min{H}.

2. While i ≤ max{H}

(a) Set ki = 1.

(b) While ki ≤ K − 1

(i) For every ji ∈
{

1, . . . ,
(
K
ki

)}
, determine the optimal scaling vector sopt

(ki, ji),i
(H) for the subspace spanned

by S ki, ji , see Definition 7.

(ii) Determine Ji:

Ji =

{
ji|ℓki, ji,i(S (ki, ji)(H), sopt

(ki, ji),i
(H),H) < 1; ji = 1, . . . ,

(
K
ki

)}
(16)

(aa) If Ji = ∅, increment ki and proceed with (b).

(bb) If |Ji| = 1 (c.f. Figure 3, second-row second panel), the rotation H allows for a sparse represen-

tation of the ith row of Λ with ki nonzero elements, with S ∗i (H) = S ki, ji and s∗i (H) = sopt
(ki, ji),i

(H).

Calculate ℓ∗i (H) (Equation (15)) and set δi·(H) = diag(S ∗i (H)).

Set i to the next element of H and go to 2.

(cc) If |Ji| > 1 (c.f. Figure 3, second-row third panel), choose one of the following strategies:

* Select the ji contributing minimum loss ℓ∗i (H). We always follow this strategy.

* Select ji randomly from Ji.

* Select ji corresponding to a subspace S ki, ji which excludes those axes for which we are inter-

ested in setting loadings to zero for variable i.

Set S ∗i (H) = S ki, ji and s∗i (H) = sopt
(ki, ji),i

(H).

Calculate ℓ∗i (H) (Equation (15)) and set δi·(H) = diag(S ∗i (H)).

Set i to the next element of H and go to 2.

(c) If Ji = ∅ (and ki = K), there is no sparse representation for the ith hyperellipsoid, i.e. the ith row of Λ.

In this case, set

S ∗i (H) = arg min
S ki−1, ji (H)

{
ℓki−1, ji,i(S (ki−1, ji), s

opt
(ki−1, ji),i

(H),H)
}

and determine s∗i (H) as in Definition 7 with S ki. ji = S ∗i (H).

Calculate ℓ∗i (H) (Equation (15)) and set δik(H) = 1 for all k ∈ {1, . . . ,K}

Set i to the next element of H and go to 2.
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3. Calculate L(H) (Equation (14)), adjust H.

Return to 1. until L(H) converges. Upon convergence H∗ = H.

Remark 2. In our simulations and applications, we optimize over the Givens rotation angles γ∗ and use the Matlab®

routine fminunc for optimization. The same routine is used to find the optimal scaling vectors sopt
(ki, ji),i

(H).

Remark 3. The loss function may be optimized sequentially, using the algorithm to optimize with respect to Givens
angles sequentially. Each angle γp involves the subspace spanned by two columns only, say k1 and k2. The set H
is thus determined for columns k1 and k2. This considerably accelerates the algorithm, as for K = 2, in step (b) we
only need to evaluate the two one-dimensional subspaces S (1,1) and S (1,2). Each optimal pairwise rotation p, H∗,p is
incorporated into the hyperellipsoids by rotating them by H′∗,p towards the optimized axes. The following optimization
for another axes pair is undertaken conditional on all previous optimizations. The final optimal rotation H∗ results
then from

H∗ =
P∏

p=1

H∗,p.

Appendix B.3 illustrates the convergence of the algorithm for the WOP-processed MCMC output of scenario K3m2_1pf

in the simulation study (Subsection 5.2).

To determine further sparse modes, we can adjust the loss function and penalize solutions too close to previously

determined solutionsH = {H1
∗ , . . . ,H

L
∗ }:

HL+1
∗ = arg min

H


∑

i∈H

ℓ∗i (H) + ζ
∑
i∈H

K∑
k=1

δi,k(H)

 / (κ min
l

{
∥H′Hl

∗ − P∗s,l∥2 + ϵ
}) , (17)

where κ > 0 is a suitably chosen penalty and

P∗s,l = arg min
Ps

(
∥H′Hl

∗ − Ps∥2

)
is the K-dimensional signed permutation matrix Ps with minimal distance to H′Hl

∗, to avoid solutions that only

permute factor position and sign of previous solutions. A small value ϵ > 0 ensures that the function is defined for

every H.

4.2. Mode identification using the output of the sparse permutation sampler

As motivated in Subsection 3.2, we run multiple chains of the sparse permutation sampler to allow the sampler

to converge to and stabilize at potentially more than one sparse mode. Each sparse representation will display 2K K!

modes due to the random permutations of factor positions and signs at the end of each iteration. In the presence of

more than one sparse mode, visual tools like scatter plots or histograms that usually uncover label and sign switching

within a mode may become inappropriate to discriminate between sparse modes in a first stage, or vice versa. For

example, the upper-left scatter plot in Figure 5 visualizes the unsorted MCMC output for factor loadings of a unit,

where the black dots represent all permutations of the true loadings for each sparse mode (λ39,· = [0.81,−0.72] and

λ39,· = [.06,−1.08], are, respectively, the first and second mode for unit 39 of scenario data50ex_ln in Subsection 5.1.)

Although the pattern discriminates well between the two sparse modes, one where both factor loadings are non-zero

15



and the other where one loading is nearly zero, it is difficult to find factor-identifying restrictions in the first mode,

as factor loadings are very close to each other (in absolute terms). The histogram of draws below the scatter plot

illustrates the difficulty in defining mode- and factor-identifying restrictions based on the marginal density of a unit-

specific factor loading. When the number of factors is larger or sparse patterns are more complex, it becomes even

more difficult to determine a restriction discriminating between sparse modes. The upper-left scatter plot of factor

loadings in Figure 6 visualizes the situation for a simulated factor model with four factors and two sparse modes.

Obviously, there is no way of separating draws into one of the modes, nor a way of identifying factors.

However, factor draws, f (m)
k =

{
f (m)
kt |t = 1, . . . ,T

}
, from the same posterior distribution will be highly correlated

across each other. We visualize this in the upper right panels of Figures 5 and 6. These scatter plots suggest that groups

of factor draws are well identified based on there cross-correlations. The right histogram in Figure 5 also shows a

distinct group of highly correlated factor draws (the absolute correlation is nearly 1). Therefore, to identify potential

multiple sparse modes and factors within modes we suggest to post-process the MCMC output based on correlations

across factor draws (or correlations across factors and factor loadings draws). In a first step, we set up an overfitting

mixture model for factors (or factors stacked with loadings), where the number of components G will be a multiple of

the number of factors K. The number of filled components will indicate the number of distinct factors sampled. Each

draw of (distinct) K factors is then assigned to the mode (the factor set) combining those K factors. The number of

filled factor sets will indicate the number of sparse modes sampled. Within each mode, we re-order draws and switch

sign accordingly to obtain factor identification.

We proceed in the following way:

1. Classify each factor draw f (m)
k =

{
f (m)
kt |t = 1, . . . ,T

}
, k = 1, . . . ,K, m = 1, . . . ,M into one of G ≥ K clusters by

estimating a mixture model with G components, where G is set to a multiple of K. The prior mixture probability

η is assumed uniform Dirichlet and is specified in a way to allow for empty groups ex-post, π(η) = D(e0, . . . , e0),

with e0 < G/2 (Rousseau and Mengersen, 2011). Conditional on the component indicator z(m)
k ∈ {1, . . . ,G},

f (m)
k |z

(m)
k = g ∼ N(fg,Fg), where the mean factor path fg = {fgt |t = 1, . . . ,T } of component g is interpreted as

factor representative.

See Appendix B.4 for more details on the sampler.

2. For posterior inference, retain those draws (m) of K factors, for which the association to components is unique,

and re-order factors in ascending order of components f (m) =

{
f (m)
z(m)

k

|k = 1, . . . ,K; z(m)
1 < · · · < z(m)

K

}
. Change the

sign of those draws negatively correlated with the factor representative f (m)
z(m)

k

:= sign(corr( f (m)
z(m)

k

, fz(m)
k

)) f (m)
z(m)

k

.

3. Finally, evaluate how many times (NZ) a factor set IZ = {Z1, . . . ,ZK} ⊂ {1, . . . ,G}, Z = 1, . . .
(G

K

)
has been

drawn. Retain the most populated, e.g. the sets with more than 1,000 draws.

Remark 4. To obtain a sharper distinction between groups, we may stack factor and factor loading draws in the first
step: Classify ( f (m)′

k λ(m)′
k )′ =

{
f (m)
kt , λ(m)

ik |t = 1, . . . ,T ; i = 1, . . . ,N
}

into one of G ≥ K clusters by estimating a mixture
model with G components.
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Figure 5: MCMC output for the scenario K = 2 factors and two sparse modes, data50ex_ln in Table 2. Left panels: Scatter plots
and histogram of factor loadings for a selected series; right panels: Scatter plots and histogram of correlations across draws for
the first factor against correlations across draws for the second factor. Blue and red colors refer to the first and second identified
mode, respectively. The black dots reflect all permutations of true factor loadings (Panel (a)) and mode-specific true factor loadings
(Panel (c)).
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Figure 6: MCMC output for the scenario K = 4 factors with two pervasive factors and two sparse modes, K4m2_2pf_ln in Table
4. Left panels: Scatter plot of factor loadings for the second series; right panels: Scatter plots of correlations across draws of the
first (third) factor against correlations across draws of the second (fourth) factor. Blue and red colors refer to the first and second
identified mode, respectively.
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Remark 5. The sampler usually converges quite quickly. Nevertheless, an increasing dimension of ( f (m)′
k λ(m)′

k )′ and
the posterior sample M may slow down considerably the clustering algorithm. Therefore, we may apply Step 1.
only to a randomly chosen subset of posterior draws to determine the factor representatives. We then determine
component association of each draw, z(m)

k , based on the correlation with factor representatives, z(m)
k = g such that

|corr( f (m)
k , fg)| = max

c
|corr( f (m)

k , fc)|, c = 1, . . . ,G.

The result of post-processing for the two examples is visualized in the bottom panels of Figures 5 and 6. The right

scatter plots of factor correlations confirm that factor draws are well sorted out into both modes and the clustering

allows for factor identification. The left scatter plots of factor loadings reflect two well identified modes for each

setting, too. For K = 2, the two modes correspond to the ones we discerned from the scatter plot of the unsorted

draws, one where both factor loadings are different from zero and the other one where one loading is shrunk towards

zero. For K = 4, the scatter plot of sorted factor loadings reveals that the loading structure of two factors (and in

fact these two factors) coincide across both modes, whereas the loading structure of the other two factors differ across

modes. The characteristics plotted for one series carry over to loadings of all other series. We discuss these and further

results in more details in Section 5.

5. Simulation study

We analyze two basic settings. In the first one, the data generating process (DGP) consists of two factors and

two different underlying factor loading structures of about equal sparsity degree. In the second one, the DGP consists

of three or four factors, where one or two of the factors are so-called pervasive factors. These are present in both

underlying factor loading structures. The remaining factors are local or unit-specific factors with different loading

structures of about equal sparsity degree. For each setting we simulate various scenarios.

We report results based on factor models estimated with the true number of factors K. Appendix D illustrates

that the post-processing procedures recover the true number of factors when models are estimated for an overfitting

number of factors. The recommendation for empirical analyses is to over- rather than underfit the number of factors

in a first round.

5.1. K = 2 factors, two underlying sparse loading structures

We simulate data driven by two static factors and two underlying loading structures with overall 50% or 80% spar-

sity, denoted as data50 or data80, respectively. The subspaces implied by the two different underlying sparse loading

structures are minimally correlated with each other. Appendix C.1 details how to construct minimally correlated

subspaces.

For each sparsity degree, we simulate loadings under an exact sparse pattern (ex), with exact zero loadings, or an

approximate pattern (ap), with “noisy” zeros. Factors and idiosyncratic errors in some scenarios satisfy Thurstone’s

assumptions exactly (thur). The variance of the idiosyncratic errors is either large or low (ln), resulting in signal-

to-noise ratios of approximately 0.8 to 1 and 4 to 5, respectively. These settings yield 16 scenarios from which we

simulate N = 40 units of length T = 100 each.
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The output of the unconstrained rotation sampler, a MCMC chain of length M = 200, 000, is post-processed as

described in Subsection 4.1. The algorithm is applied to find two distinct modes, penalizing the first mode when

optimizing towards the second one (see (17)). Throughout, the HPD intervals are constructed with α = 0.05. Table 1

displays a comparison of each estimated mode with the closest simulated mode. We report for each mode the number

and the average absolute values of false zeros and false non-zeros, and the Jaccard and simple matching coefficients

between simulated and estimated modes. To account for the effect of setting loadings to zero, reported average values

in this table are those obtained from re-estimating the model conditional on the identified sparse loading pattern.

Table 1: K = 2, unconstrained rotation, α = 0.05. The second column dislays which simulated mode was detected first and second.
Absolute true and estimated average values are reported for, respectively, false zeros and non-zeros.

Scenario Ordering False zeros False non-zeros Matching indices
Number Average Number Average Jaccard Simple score

data50ex_thur_ln 1 0 - 0 - 1.00 1.00
2 0 - 0 - 1.00 1.00

data50ex_ln 1 0 - 0 - 1.00 1.00
2 0 - 0 - 1.00 1.00

data50ap_thur_ln 1 1 0.12 1 0.10 0.95 0.98
2 0 - 0 - 1.00 1.00

data50ap_ln 1 1 0.12 1 0.09 0.95 0.98
2 0 - 0 - 1.00 1.00

data80ex_thur_ln 2 0 - 0 - 1.00 1.00
1 0 - 0 - 1.00 1.00

data80ex_ln 2 0 - 0 - 1.00 1.00
1 0 - 0 - 1.00 1.00

data80ap_thur_ln 2 2 0.13 1 0.08 0.91 0.96
1 0 - 0 - 1.00 1.00

data80ap_ln 2 1 0.13 6 0.10 0.82 0.91
1 0 - 4 0.11 0.87 0.95

overall average 0.31 0.12 0.81 0.10 0.97 0.99

data50ex_thur 1 0 - 0 - 1.00 1.00
2 0 - 0 - 1.00 1.00

data50ex 1 0 - 0 - 1.00 1.00
2 0 - 0 - 1.00 1.00

data50ap_thur 1 1 0.12 0 - 0.98 0.99
2 1 0.13 0 - 0.98 0.99

data50ap 1 1 0.12 0 - 0.98 0.99
2 1 0.13 0 - 0.98 0.99

data80ex_thur 2 0 - 0 - 1.00 1.00
1 0 - 0 - 1.00 1.00

data80ex 2 0 - 0 - 1.00 1.00
1 2 0.56 0 - 0.92 0.98

data80ap_thur 2 2 0.12 0 - 0.94 0.98
1 3 0.23 0 - 0.89 0.96

data80ap 2 2 0.13 0 - 0.94 0.98
1 3 0.37 0 - 0.89 0.96

overall average 1.00 0.24 0.00 - 0.97 0.99

The upper part of the table displays the results for the low-noise scenarios. Both simulated modes are always

perfectly recovered for the exact sparsity scenarios. In scenarios with approximate sparsity, one of the modes is

perfectly recovered in almost all cases, with only 1 or 2 false zeros or non-zeros. One exception (data80ap_ln)

produces a larger number of false non-zeros. However, their magnitude is small.

The lower part of the table displays the results for the high-noise scenarios. No false non-zeros are obtained in

anyone of them. In three cases, both modes are recovered perfectly, and one mode is perfectly recovered in one

case (data80ex). The number of false zeros is small, ranging from 1 to 3, but the average value of true loadings is
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sometimes larger in magnitude, reaching up to 0.56. Apparently, a lower signal-to-noise ratio induces the procedure

to occasionally identify slightly more sparsity than simulated. Figure 7 provides a graphical illustration of average

absolute values of false zeros and non-zeros across scenarios.

Figure 8 displays heat plots of simulated (left) and estimated (right) loadings for both modes of the scenario

data50ex_thur_ln. They confirm that sparse patterns are well recovered by the optimization procedure described in

Subsection 4.1.

Figure 7: K = 2, unconstrained rotation. Boxplot of average absolute values of factor loadings, pooled across scenarios. The
centerline is the median, the edges correspond to the 25th and 75th percentiles (IQR), while the whiskers extend 1.5 times IQR
beyond the edges. Note: No false non-zeros in the high-noise scenarios, hence no boxplot to display.
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Figure 8: K = 2, unconstrained rotation, scenario data50ex_thur_ln. Heat plot of posterior mean factor loadings.
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Applying the sparse permutation sampler described in Subsection 3.2, we estimate each scenario with 11 chains of

10,000 draws. After running an initial chain, starting values for 10 parallel chains are obtained by random orthonormal

rotation of a draw for factor loadings of this initial chain. By retaining the last 4,000 of each chain, we obtain 44,000

draws for posterior inference.

Figure 9: K = 2, sparse permutation, scenario data50ex_thur_ln. Posterior draws, unsorted and sorted. From top left to bottom
right: Correlation of the first with all other posterior draws of factor 1, posterior draws of a selected row of Λ, correlation of the
first with all other sorted posterior draws of mode-specific factor 1, sorted posterior draws of a mode-specific row of Λ.
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The first line in Figure 9 shows the unsorted draws from the sparse permutation sampler for the scenario data50ex_

thur_ln. In each panel, the left figure plots the correlations of the first draw for the first factor with all remaining

draws, while the right panel plots the unsorted draws for a selected row of Λ. After clustering and re-ordering the

draws accordingly, 8,000 draws are allocated to the first mode (second line, left panel). The correlation of the first

draw for the first factor with all remaining draws is close to 1, and the factor loadings for the selected row of Λ are

all located near 0 and near −1, respectively. Accordingly, the remaining 36,000 draws are allocated to the second

mode (second line, right panel). The correlation of the first draw for the first factor with all remaining draws is close

to 1 here as well, and the factor loadings for the selected row of Λ are all located near −0.7 and −0.8, respectively.

This implies that the first mode has a nonzero loading in the chosen row of Λ only for one of the factors, whereas the

second mode has nonzero loadings in the chosen row of Λ for both factors.

Table 2 provides an overview of the estimation results obtained with the sparse permutation sampler. The number

of false zero and non-zero loadings is somewhat higher than for the unconstrained rotation approach. However, the

true loadings for false zeros are overall small in absolute value. The average absolute value of false non-zeros is in

the same range as for the unconstrained rotation approach. Figure 10 provides a graphical illustration of the absolute

values of false zeros and non-zeros across low- and high-noise scenarios. Overall, deviations of estimated from true
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Table 2: K = 2, sparse permutation. The first (second) line evaluates the first (second) mode. The second column reports the
number of posterior draws assigned to the respective mode. The posterior median of absolute true and estimated average values
are reported for, respectively, false zeros and non-zeros.

Scenario Draws False zeros False non-zeros Matching indices
Number Average Number Average Jaccard Simple score

data50ex_thur_ln 8,000 8 0.03 0 - 0.83 0.90
36,000 2 0.05 0 - 0.96 0.97

data50ex_ln 4,000 8 0.03 0 - 0.83 0.90
40,000 2 0.05 2 0.08 0.92 0.95

data50ap_thur_ln 4,000 0 - 1 0.08 0.98 0.99
40,000 0 - 1 0.03 0.98 0.99

data50ap_ln 32,000 0 - 6 0.14 0.87 0.93
12,000 0 - 4 0.08 0.92 0.95

data80ex_thur_ln 16,000 0 - 0 - 1.00 1.00
28,000 2 0.04 0 - 0.93 0.97

data80ex_ln 40,000 0 - 2 0.08 0.94 0.97
4,000 2 0.04 1 0.07 0.89 0.96

data80ap_thur_ln 28,000 2 0.13 1 0.15 0.91 0.96
16,000 0 - 0 - 1.00 1.00

data80ap_ln 36,000 3 0.12 3 0.10 0.83 0.93
8,000 2 0.12 3 0.12 0.83 0.94

overall average 1.9 0.05 1.5 0.10

data50ex_thur 20,000 8 0.03 0 - 0.83 0.90
24,000 2 0.05 0 - 0.96 0.97

data50ex 16,000 7 0.03 3 0.17 0.80 0.88
28,000 2 0.05 6 0.07 0.86 0.90

data50ap_thur 32,000 1 0.12 0 - 0.97 0.99
12,000 1 0.13 0 - 0.98 0.99

data50ap 44,000 1 0.12 5 0.12 0.87 0.93
- - - - - - -

data80ex_thur 20,000 0 - 0 - 1.00 1.00
24,000 2 0.04 0 - 0.93 0.97

data80ex 10,997 0 - 11 0.12 0.72 0.86
33,001 2 0.04 8 0.16 0.71 0.88

data80ap_thur 28,000 3 0.12 0 - 0.91 0.96
16,000 2 0.12 0 - 0.93 0.97

data80ap 8,939 2 0.13 4 0.16 0.83 0.93
27,135 2 0.12 5 0.16 0.78 0.91

overall average 2.2 0.07 2.6 0.13

values are small.

The heat plots for each mode of the factor loading matrices is shown in Figure 11, where simulated and estimated

structures are displayed on, respectively, the left and right side. Note that the sign of estimated loadings has been

adjusted such that the majority of loadings is positive for each factor. Therefore, the sign of estimated loadings

is opposite to the simulated ones. The post-processing procedure recovers well both underlying simulated sparse

structures.

5.2. Simulated K = {3, 4} with pervasive and local factors

For K = 3 we simulate a pervasive factor (1pf ), i.e. a strong factor driving all variables, and two weaker, i.e.

local or group-specific, factors, which can be represented by two underlying sparse loading structures. For K = 4,

we simulate one or two pervasive factors (1pf or 2pf ) complemented with, respectively, three or two weaker factors.

Again, we simulate data with a high (ln) and low signal-to-noise ratios. Combining these features yields six settings,

from which we simulate N = 60 series of length T = 100 each.

The post-processing approach described in Subsection 4.1 is applied to sequences of length 200,000 obtained from
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Figure 10: K = 2, sparse permutation, pooling over scenarios and factors. Boxplot of absolute median factor loadings. The
centerline is the median, the edges correspond to the 25th and 75th percentiles (IQR), while the whiskers extend 1.5 times IQR
beyond the edges.
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Figure 11: K = 2, sparse permutation, scenario data50ex_thur_ln. Heat plot of posterior median factor loadings.
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the unconstrained rotation sampler. The algorithm is again guided to identify two distinct modes, penalizing the first

mode when optimizing towards the second mode. Throughout, the HPD intervals are constructed with α = 0.05.

Table 3 displays the comparison between estimated and the closest simulated modes. We report the number of false

zeros and non-zeros for each mode, including the Jaccard and simple matching coefficients between simulated and
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estimated factor loading structures. We also report the average absolute value across false zero and non-zero loadings.

For the scenario K3m2_1pf_ln, both modes are perfectly recovered. For the corresponding high-noise scenario, there

are 12 false zeros in both modes, with an average absolute true value of around 0.3. For the scenarios with K = 4

factors and one pervasive factor, the number of false zeros increases to 39, and to 12 for false non-zeros. Especially in

the scenario K4m2_2pf, the average across absolute values of false non-zeros is around 0.4 or 0.5, which indicates that

the estimated sparse representations differ somewhat from the simulated ones. For the scenarios with two pervasive

factors, the number and the average absolute value of false zeros seem very large. We provide an explanation for this

feature further below. The left panel in Figure 12 visualizes the results of Table 3. We display box-plots of average

absolute true values of false zeros and estimated values of false non-zeros, pooled across scenarios with two pervasive

factors.

Table 3: K = 3, K = 4, unconstrained rotation, α = 0.05. The second column dislays which simulated mode was detected first and
second. Absolute true and estimated average are reported for, respectively, false zeros and non-zeros.

Scenario Ordering False zeros False non-zeros Matching indices
Number Average Number Average Jaccard Simple score

K3m2_1pf 2 12 0.34 0 - 0.88 0.93
1 12 0.30 0 - 0.88 0.93

K3m2_1pf_ln 2 0 - 0 - 1.00 1.00
1 0 - 0 - 1.00 1.00

K4m2_1pf 2 39 0.28 9 0.24 0.66 0.80
1 35 0.26 3 0.10 0.72 0.84

K4m2_1pf_ln 1 24 0.24 12 0.50 0.75 0.85
2 24 0.22 12 0.44 0.75 0.85

K4m2_2pf 1 84 0.40 1 0.40 0.46 0.65
2 80 0.41 4 0.16 0.47 0.65

K4m2_2pf_ln 2 53 0.46 13 0.39 0.65 0.78
1 67 0.42 1 0.54 0.52 0.67

Figure 13 displays heat plots for factor loadings of the scenario K4m2_2pf, for simulated and estimated loadings

on the left and right side, respectively, in each panel. In both top panels we see that the estimated loading structure

for pervasive factors is sparser than the simulated structure, which reflects the large number of false zeros reported

in Table 3. However, the post-processing procedure indeed optimizes the rotation to induce sparsity. The bottom

panels display a Varimax rotated version of the simulated pervasive factors in each left heat plot. We see that the

post-processing procedure identifies a sparse structure for pervasive factors that is very similar to a Varimax rotation

of simulated loadings. The deviations between simulated and estimated structures for the weak factors reflect the

results reported in Table 3.

The sparse permutation sampler was run with 16 chains of 10,000 draws. After an initial chain, starting values for

factor loadings are obtained by random orthonormal rotations of a factor loading draw taken from the initial chain.

We again retain the last 4,000 of each chain to obtain 64,0000 draws for posterior inference.

Table 4 provides an overview of the estimation results obtained with the sparse permutation sampler. Note that

for all scenarios, the number of draws assigned to each mode do not sum up to 64,000. While the sum across modes

is only slightly below 64,000 for the scenarios K3m2_1pf and K4m2_2pf_ln, the number of draws not assigned to
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Figure 12: Scenario K4m2_2pf and K4m2_2pf_ln, pooling over modes. Boxplot of absolute factor loadings. The centerline is the
median, the edges correspond to the 25th and 75th percentiles (IQR), while the whiskers extend 1.5 times IQR beyond the edges.
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one of simulated modes is substantially larger in the remaining scenarios. Nonetheless, for the scenarios with K = 3

factors, both modes are identified perfectly, and in the scenarios with K = 4 factors, there are only very few false

non-zero loadings across all scenarios, and the number of false zeros is much lower than the one obtained by posterior

rotation (see Table 3). When compared with the output obtained by posterior rotation, the true loadings of false zeros

are smaller in magnitude for the scenarios with K = 4 and one pervasive factor, and similar for the scenarios with

K = 4 and two pervasive factors (see also the right panel in Figure 12). Note that for these scenarios, the number

of false zeros and average absolute values of true factor loadings are quit large. The sparsity induced by the sparse

permutation sampler on loadings of the pervasive factors comes close to a Varimax rotation of the simulated loadings,

see Figure 14 which displays heatplots of factor loadings. We also observe that the loading structure of the two weaker

factors is recovered quite well for both modes, which clearly outperforms posterior rotation.
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Figure 13: K = 4, unconstrained rotation, scenario K4m2_2pf. Heat plot of posterior mean factor loadings. Second line: Varimax
rotation of simulated loadings for the two pervasive factors.
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Table 4: K = 3, K = 4, sparse permutation. The first (second) line evaluates the first (second) mode. The second column reports
the number of posterior draws assigned to the respective mode. The posterior median of absolute true and estimated average values
are reported for, respectively, false zeros and non-zeros.

Scenario Draws False zeros False non-zeros Matching indices
Number Mean Number Mean Jaccard Simple score

K3m2_1pf 27,999 0 - 0 - 1.00 1.00
35,959 0 - 0 - 1.00 1.00

K3m2_1pf_ln 8,000 0 - 0 - 1.00 1.00
43,813 0 - 0 - 1.00 1.00

K4m2_1pf 22,661 15 0.14 0 - 0.89 0.94
13,712 10 0.14 0 - 0.92 0.96

K4m2_1pf_ln 4,000 0 - 0 - 1.00 1.00
2,895 12 0.16 18 0.24 0.80 0.88

K4m2_2pf 20,670 57 0.48 1 0.39 0.63 0.76
38,661 59 0.47 1 0.39 0.62 0.75

K4m2_2pf_ln 12,000 41 0.46 1 0.41 0.73 0.82
51,898 40 0.46 1 0.41 0.74 0.83

28



Figure 14: K = 4, sparse permutation, scenario K4m2_2pf. Heat plot of posterior median factor loadings. Second line: Varimax
rotation of simulated loadings of the two pervasive factors.
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6. Applications

To illustrate the sampler and the post-processing procedures, we revisit the datasets used in Kaufmann and Schu-

macher (2017), namely monthly inflation series in US sectoral CPI components (Mackowiak et al., 2009) and yearly

GDP growth rates of a multi-country panel used in Francis et al. (2017). To analyze the datasets, we extend the specifi-

cation to include p autoregressive terms to capture factor dynamics and q terms to capture (independent) idiosyncratic

dynamics. In the next subsection, we briefly expose the extended model specification and the conditional posterior

distributions to sample the dynamic parameters. We justify that the post-processing algorithm described in Subsection

4.1, based on orthonormal rotations of an orthonormal factor basis, can be applied to the MCMC output of a dynamic

factor model. Empirical results follow in the next two subsections.

6.1. Extending to dynamic factors and idiosyncratic components

To capture the observed persistence in time series, model (2)-(3) is extended:

yt = Λ ft + εt, ϵt ∼ i.i.d. N (0,Σϵ) , (18)

ft = Φ1 ft−1 + · · · + Φp ft−p + νt, νt ∼ i.i.d. N(0, IK) (19)

εt = Ψ1εt−1 + · · · + Ψqεt−q + ϵt, ϵt ∼ i.i.d. N (0,Σϵ) . (20)

The parameter vector θ includes also Φ = {Φ1, . . . ,Φp} and Ψ = {Ψ1, . . . ,Ψq}, and the likelihood is formulated in

terms of filtered series ỹt = Ψ(L)yt = yt − Ψ1yt−1 − · · · − Ψqyt−q and f̃t = (ψ1(L) f ′t , . . . , ψN(L) f ′t )′

L(ỹ| f̃ , θ) =
T∏

t=1

π(ỹt | f̃t, θ), (21)

with normal observation density

π(ỹt | f̃t, θ) =
1

√
2π|Σϵ |1/2

exp
{
−

1
2

(
ỹt − Λ f̃t

)′
Σ−1
ϵ

(
ỹt − Λ f̃t

)}
,

with each row i of Λ as ith block-diagonal element of Λ. Conditionally, factors are independent ft | f t−1,Φ ∼

N
(
Φ1 ft−1 + · · · + Φp ft−p, IK

)
. The prior reflects this conditional independence and is specified in terms of filtered

factors f̄t = Φ(L) ft, π( f̄ ) = N(0,F0), with F0 block-diagonal with elements F(i)
0 for initial conditions { f0, . . . , f−p+1}

and IK for ft, t = 1, . . . ,T .

Posterior inference is obtained via the posterior sampler described in Subsection 3.2, applied to filtered data and

including two additional sampling steps to update parameters {Φ,Ψ}. In Step 3., in addition to sample from 3.i

π
(
Σϵ |ỹ, f̃ ,Λ

)
, we sample from

3.ii π (Φ| f ) = N(p,P), where moments P and p are derived based on the vector-autoregression (19).

3.iii π (Ψ|y, f ,Λ,Σϵ) =
N∏

i=1

N(qi,Qi) where moments Qi and qi are derived independently for each series based on
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(20), i.e.

εit = ψi1εi,t−1 + · · · + ψiqεi,t−q + ϵit, ϵit ∼ i.i.d. N(0, σi) and εit = yit − λi· ft.

At the end of each iteration, random rotation or permutation is applied to factor-specific parameters Φ, too. Both

post-processing procedures can be applied as described in Section 4. In particular, given that factors are conditionally

independent and prior and posterior distributions reflect this independence, we can post-process the MCMC sample

of factors by orthonormal rotation to detect sparse modes.

6.2. Monthly CPI sectoral inflation rates

The dataset contains N = 79 sectoral inflation series covering the period February 1985 to May 2005, T = 244.

We estimate a model with K = 2 factors, include p = 4 and q = 2 factor and idiosyncratic autoregressive terms,

respectively, which reflects results documented in Mackowiak et al. (2009). Mackowiak et al. (2009) preferred a

model with one over two factors, although results remain basically unchanged when including two factors. We revisit

the dataset to evaluate whether the uncertainty about the number of factors may be due to underlying weak factors.

Figure 15: US CPI, uncontrained rotation. Mean estimated factor loadings
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Figure 15 shows the loadings patterns identified by the unconstrained rotation approach. For the first mode (left

panel) there are 33 non-zero loadings on the first factor and 12 non-zero loadings on the second factor. All loadings
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are nonnegative. For the second mode (right panel), there are 39 non-zero loadings on the first factor and 18 non-zero,

some of them negative, loadings on the second factor.

Were the first factor pervasive, factor loadings should be similar across modes. This is not quite the case, as shown

in Figure 15 and hard to assess from mean factor plots displayed in Figure 16. However, the correlation across first

factors of both modes is 0.86, while the correlation across factors in each mode is as low as 0.18 and 0.09 for Mode 1

and 2, respectively.

Figure 16: US CPI, unconstrained rotation. Mean factors of Mode 1 (first line) and Mode 2 (second line).
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Using the sparse permutation sampler, the results are based on 13 chains of 11,000 draws, retaining the last 5,000,

obtaining 65,000 draws for posterior inference. In a first round, clustering factor draws based on correlations we

identify one pervasive factor. Therefore, we set G = 3 to post-process factor draws as described in Appendix B.4

setting e0 = .1(K/2−1). Each draw is assigned to one of the three components, potentially allowing for
(
3
2

)
= 3 factor

combinations IZ = {Z1,Z2} ⊂ {1, 2, 3}, all Zk different.

Sorting out the draws, only two factor combinations are visited. Table 5 reports that almost all of the 65,000 draws

can be assigned to either of the two modes. We identify 1 pervasive factor and 2 weaker ones. Non-zero loadings

are determined by loadings for which the median posterior probability of a non-zero factor loading is larger than 0.5,

q0.5(β(m)
i j ) > 0.5.

Figure 17 shows the loadings patterns. In the first mode, there are 25 non-zero loadings on the first factor and 23

on the second factor, while in the second mode, there are 34 non-zero loadings on the first factor and 13 on the second
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factor. Negative loadings occur with the second factors, but are rare and overall close to zero.

Table 5: US CPI, sparse permutation. Sorted output, Jaccard matching indices computed across median loading matrices.

Factor combination Draws Non-zero loadings Jaccard matching indices
Compared to {1, 2}

{1, 2} 53,086 25/23 - -
{1, 3} 11,793 34/13 73.5 28.6

Figure 17: US CPI, sparse permutation. Median factor loadings
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Looking at the correlations across mean factors (Figure 18), the correlation between the two first factors is virtually

1, while the two second factors show merely a correlation of about 0.5. The correlation between the two factors from

both modes is 0.59 and 0.31, respectively, and hence somewhat larger than between the factors identified by the

unconstrained rotation approach. The mean factors themselves are shown in Figure 19.

Overall, we conclude that both post-processing procedures yield evidence for a pervasive factor across two sparse

modes and two weaker factors, each present in one mode.

6.3. Yearly GDP growth rates

The dataset contains N = 57 GDP growth series covering the years 1961 to 2009, T = 49. We estimate a model

with K = 4 factors, include p = 2 and q = 1 factor and idiosyncratic autoregressive terms, respectively. We again

revisit the data to uncover the number and characteristics of factors, i.e. whether a number of pervasive factors may

be extracted with potentially differing local factors.

33



Figure 18: US CPI, sparse permutation. Factor correlations, across factor combinations.
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Figure 20 shows the loadings patterns identified by the unconstrained rotation approach. For the first mode (left

panel), there are 5, 5, 22 and 12 non-zero loadings, respectively, for the four factors. There are two negative loadings,

one on the first and one on the fourth factor, both close to zero. For the second mode (right panel), there are 9, 7, 22

and 11 non-zero loadings, respectively, on the four factors, with two negative loadings each on the first and second

factors.

Figure 21 shows the factors, those corresponding to the first mode in the upper two rows, and those corresponding

to the second mode in the lower two rows. Looking at the correlations between factors across modes, Factors 1, 2 and

3 correlate with, respectively, 0.99, 0.97 and 1 across modes, while the correlation between the fourth factor of each

mode is somewhat lower.

For the sparse permutation sampler, the results are again based on 13 chains of 11,000 draws, retaining the last

5,000, obtaining 65,000 draws for posterior inference. Clustering factor draws in a first round based on correlations,

we identify 3 pervasive factors. Therefore, we set G = 7 to post-cluster factor draws as described in Appendix B.4,

setting e0 = 0.01(G/2− 1) to allow for empty clusters. Each draw is assigned to one of seven components, potentially

allowing for
(
7
4

)
= 35 factor combinations IZ = {Z1, . . . ,Z4} ⊂ {1, . . . , 7}, all Zk different.

Sorting out the draws, only three factor combinations are visited. Table 6 reports again that almost all of the

65,000 draws can be assigned to either of the three modes. We identify 3 pervasive factors and 3 weaker ones. Figure

22 displays the loadings patterns. The number of non-zero loadings on the three pervasive factors is virtually identical

across the three modes, with 13 or 14 non-zero loadings on the first, 7 non-zero loadings on the second, and 41, 42 or

43 non-zero loadings on the third factor. Moreover, note that these non-zeros occur in the same places. For the fourth
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Figure 19: US CPI, sparse permutation. Mean factors. Mode 1 (first line) and Mode 2 (second line).
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factor, there are between 11 and 16 non-zero loadings, and the location of these vary substantially across factors.

Looking at the correlations between factors across modes (Figure 23), the correlation between the first three

pervasive factors across modes is virtually 1, while the correlations between the fourth factors across modes are close

to zero. Correlations across factors of each mode are also low to moderate only. The mean factors themselves are

shown in Figure 19.

We conclude that both post-processing procedures yield evidence for three pervasive factors. While post-processing

the random rotation output yields two modes with two weaker factors, the post-processed output of the sparse sampler

is able to identify three modes with one weak factor each. Sampling by random rotation is based on orthonormal

rotations and likewise, when post-processing the MCMC output of the random rotation sampler, the optimization

towards sparsity is based on orthonormal rotations. The sparse permutation sampler induces sparsity in the loading

matrix while sampling, where the different sparse representations need not be nested within each other by orthonor-

mal rotation. This may explain the ability of the sparse permutation sampler to uncover more weaker factors for this

application.
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Figure 20: GDP growth, unconstrained rotation: Mean factor loadings
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Table 6: GDP growth, sparse permutation. Sorted output.

Factor combination Draws Non-zero loadings Jaccard matching indices
Compared to {1, 2, 3, 4}

{1, 2, 3, 4} 16,181 14/7/43/11 - - - -
{1, 2, 3, 5} 18,037 13/7/42/16 92.9 1.0 97.7 3.9
{1, 2, 3, 6} 30,473 13/7/41/16 80.0 1.0 95.4 3.9
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Figure 21: GDP growth, unconstrained rotation. Mean factors. Mode 1 (first two row) and Mode 2 (bottom two rows).
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Figure 22: GDP growth, sparse permutation. Mean factor loadings, averaged over draws with a non-zero probability larger than
0.5.
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Figure 23: GDP growth, sparse permutation. Factor correlations, across factor combinations.
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Figure 24: GDP growth, sparse permutation. Mean factors.
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7. Conclusion

We present two approaches to uncover whether a sparse factor representation underlies high-dimensional data and

whether the sparse representation is (locally) unique. Both approaches estimate the factor model within a Bayesian

framework based on order-invariant, just-identified Markov chain Monte Carlo sampling. The first approach specifies

a normal prior distribution for factor loadings and explores the unconstrained posterior distribution by implementing

an unconstrained random rotation sampler. The second approach induces sparsity in the factor loading matrix by

specifying a hierarchical point mass-normal mixture prior distribution on factor loadings. Random permutation of

factor position and sign helps exploring the unconstrained posterior distribution. Given that the sampler may stabilize

upon convergence to a sparse representation of the factor loading matrix, we run multiple chains in parallel to allow

the sampler to converge to various sparse modes.

The posterior output of both samplers is post-processed to uncover potential multiple sparse representations of the

factor model. The output of the unconstrained rotation sampler is optimally rotated towards sparse representations,

i.e. towards different, most sparse representations displaying similar sparsity. The output of the sparse permutation

sampler is post-processed to cluster factor and factor loading draws and group them into typical combinations of joint

factor draws.

An extensive simulation exercise demonstrates that both approaches recover multiple underlying sparse represen-

tations, also in the presence of so-called pervasive factors, that is, factors affecting most and the same units in multiple

sparse representations. We illustrate the importance of uncovering multiple sparse structures by applying the method

to two datasets, for which the determination of the number of factors has been ambiguous in empirical applications.

We show that pervasive factors underly each dataset, while some weaker factors are present, each identifiable jointly

with the pervasive ones, but too weak to be jointly identifiable all together. The applications evidence that the sparse

permutation sampler extracts pervasive factors of higher correlation across sparse representations than the rotated

output of the unconstrained rotation sampler, and eventually identifies more weak factors.

Multiple sparse factor loading representations potentially lead to different factor and structural interpretations,

which may be exploited in future research depending on the research question of interest.
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Appendix A. Posterior sampling

Appendix A.1. Posterior distribution of factor loadings and hyperparameters

The prior (7)-(9) in Subection 3.1 implies a common base rate of a non-zero factor loading of E
(
βi j

)
= ρ jb across

variables. The marginal prior becomes

π
(
λi j|ρ j

)
∼ (1 − ρ jb)δ0(λi j) + ρ jbN

(
0, τ j

)
.

For each factor j, transform the variables to

y( j)
it = yit −

k∑
l=1,l, j

λil flt = λi j f jt + ϵit,

which isolates the effect of factor j on variable i. Combine the marginal prior with data information to sample

independently across i from

π
(
λi j|·

)
=

T∏
t=1

π(y( j)
it |·)

{
(1 − ρ jb)δ0(λi j) + ρ jbN

(
0, τ j

)}
,

= P
(
λi j = 0|·

)
δ0(λi j) + P

(
λi j , 0|·

)
N

(
mi j,Mi j

)
,

with observation density π(y( j)
it |·) = N

(
λi j f jt, σ

2
i

)
and where

Mi j =

 1
σ2

i

T∑
t=1

f 2
jt +

1
τ j

−1

, mi j = Mi j

 1
σ2

i

T∑
t=1

f jty
( j)
it

 .
The posterior odds of a non-zero factor loading in (A.1) are given by:

P
(
λi j , 0|·

)
P

(
λi j = 0|·

) = π
(
λi j

)
|λi j=0

π
(
λi j|·

)
|λi j=0

ρ jb
1 − ρ jb

=
N

(
0; 0, τ j

)
N

(
0; mi j,Mi j

) ρ jb
1 − ρ jb

.

Conditional on λi j we update the variable specific probabilities βi j and sample from π(βi j|λi j, ·). If λi j = 0

π(βi j|λi j = 0, ·) ∝ (1 − βi j)
[
(1 − ρ j)δ0(βi j) + ρ jB (ab, a(1 − b))

]
,

P(βi j = 0|λi j = 0, ·) ∝ (1 − ρ j), P(βi j , 0|λi j = 0, ·) ∝ (1 − b)ρ j.

That is, with posterior odds (1− b)ρ j/(1− ρ j) we sample from B (ab, a(1 − b) + 1) and set otherwise βi j equal to zero.

Conditional on λi j , 0 we obtain

π(βi j|λi j , 0, ·) ∝ βi jN
(
λi j; 0, τ j

) [
(1 − ρ j)δ0(βi j) + ρ jB (ab, a(1 − b))

]
,

P(βi j = 0|λi j , 0, ·) = 0, P(βi j , 0|λi j , 0, ·) = 1.

In this case we sample βi j from B (ab + 1, a(1 − b)).

The hyperparameters τ j and ρ j are sampled from, respectively, an inverse Gamma π
(
τ j|·

)
∼ IG

(
g j,G j

)
and a Beta
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distribution, π
(
ρ j|·

)
∼ B

(
r1 j, r2 j

)
, with

g j = g0 +
1
2

N∑
i=1

I
{
λi j , 0

}
, G j = G0 +

1
2

N∑
i=1

λi j
2,

r1 j = r0s0 + S j, r2 j = r0(1 − s0) + N − S j, and S j =

N∑
i=1

I
{
βi j , 0

}
,

and I {·} is the indicator function.

Appendix A.2. Running parallel chains: Convergence

When executing parallel chains with a fixed burn-in and a fixed number of iterations, we need to assess whether

both are sufficiently large for the sampler to converge for each chain, and whether we have produced enough iterations

to perform posterior evaluations. Assessing convergence in a high-dimensional, latent-variable model is not trivial,

if we disregard the usual trace and autocorrelation plots or convergence diagnostics for single parameter values. It is

even more involved if we (have to) take into consideration random factor and sign permutation applied at the end of

each iteration.

We suggest using a statistic to assess convergence of both the unidentified and identified posterior output, based on

a sign-independent model parameter. We compute the Jaccard matching index between the first draw of a (sub-)chain

and all following draws, based on an indicator matrix for non-zero loadings, obtained by evaluating β(m)
i j > .75 for each

draw m. To resolve factor permutation in the unidentified output, we re-order factor-specific columns to maximize the

Jaccard matching index between the first draw m̃ of the (sub-)chain and each subsequent one.

Figure A.25, Panels (a) and (b), plots the Jaccard matching index for the unidentified posterior output. Panel (a)

displays various series of Jaccard matching index for the first chain of 11,000 draws, computed between starting draws

m̃ = 1, 1001, 2001, . . . , 6001 and all subsequent draws. We observe that the index series for m̃ = 1 yields very low

values. As the sampler proceeds, the level of the index series increases, the overall value and the pattern stabilizes

after m̃ = 5001. The dip in the index around m = 8000 may represent draws from another mode present in the data.

In Panel (b), we concatenate the Jaccard matching index series of all chains, each with first draw set to m̃ = 6001.

We observe that the level and the pattern of the series is similar across chains. From these plots, we conclude that a

burn-in of 6000 is enough for each chain to reach convergence.

Panels (c) and (d) of Figure A.25 show the Jaccard matching index series for each mode, respectively, 1 and 2.

Both series are unimodal, and as such reflect that the post-processing procedure identifies well both modes.

Figure A.26 plots the posterior output for both modes. The top-left plot in Panels (a) and (b) are the same, they plot

the correlation of the first draw for Factor 2 with the all remaining ones. We clearly observe a bi-modal distribution,

reflecting the two weaker factors. The top-right figures in each panel show the trace plots of factor loadings for a

specific series in each mode, where the blue (red) trace corresponds to the loading of Factor 1 (2). We observe a

bimodal trace plot for Factor 2 only. The bottom panels display similar graphs for each mode-identified posterior

output. The correlation across factor draws and factor loadings as well show unimodal distributions, which again
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reflects that posterior processing works well in identifying both modes. A strong factor (Factor 1) is the same across

modes, whereas a weaker factor (Factor 2) characterizes each mode.
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Figure A.25: US CPI: Jaccard index between the first draws (Draw m̃) of a (sub-)chain and the subsequent ones, based on indicator
matrices obtained by evaluating β(m)

i j > .75. To resolve factor permutation, we re-order factor-specific columns to maximize the
Jaccard matching index between the first draw m̃ of the (sub-)chain and each subsequent one. To improve the visualization, the
index starts at 1 (the Jaccard matching index for the 1st draw with itself). (a) Initial chain of 11,000 draws; (b) Concatenated,
retained 6,000 draws of 13 chains; (c) Sorted output for the first mode (53,086 draws); (d) Sorted output for the second mode
(11,793 draws).
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Figure A.26: US CPI: Posterior draws, unsorted and sorted, K = 2. From top left to bottom right: Correlation of the first with
all other posterior draws of Factor 2, posterior draws of a selected row of Λ, correlation of the first with all other sorted posterior
draws of mode-identified Factor 2, sorted posterior draws of a mode-identified row of Λ.).
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Appendix B. Post-processing

Appendix B.1. Givens decomposition of an orthogonal matrix

An orthogonal matrix H with det(H) = 1 is a rotation matrix. An orthogonal matrix H with det(H) = −1 can be

transformed into a rotation matrix by multiplying the last column of H by −1, inducing an axis reflection. Note that

to identify a sparse pattern in the algorithm proposed in Subsection 4.1, axis reflections are ruled out, so it is sufficient

to consider H with det(H) = 1.

Rotation matrices of dimension K > 2 can be decomposed into Givens rotation matrices, see Golub and van Loan

(2013), Section 5.1.

The Givens decomposition of an orthogonal matrix H with H′H = HH′ = IK can be performed as follows. First,

define all pairs of axes k1, k2 ∈ {1, . . . ,K} with k1 , k2. There are P =
(
K
2

)
such pairs, p = {1, . . . , P}. Then apply

following steps, starting with p = 1.

1. Determine the two-dimensional Givens rotation matrix

Gp =
1

∥(hk1,k1 , hk2,k1 )′∥2
·

 hk1,k1 hk2,k1

−hk2,k1 hk1,k1

 =
gp,1,1 gp,1,2

gp,2,1 gp,2,2

 .
2. Calculate the Givens rotation angle of matrix Gp as

γp = arctan2(gp,2,1, gp,1,1).

3. Replace the k1
th and k2

th row of matrix H, denoted as the submatrix H{k1,k2},·, by its rotated version GpH{k1,k2},·.

4. If p < P, increment p and proceed with step 1, otherwise the decomposition is complete, in which case H = IK .

Appendix B.2. Constructing a K = 3-dimensional hyperellipsoids

Figure B.27 extends the construction exercise to three dimensions. Each row of the plot shows one pair of dimen-

sions, with dimensions 1 and 2 in the first, 1 and 3 in the second, and 2 and 3 in the third row. The unit circle in the

first panel of each row is hence a unit ball when all three dimensions are considered. The ellipses in the second panel

of each row represent the expanded ellipsoid from three different angles. In the third panel of each row, the ellipse has

been rotated, and the original axes are indicated within the rotated ellipsoid. Again, the last panel of each row shows

the data points inside and outside the ellipsoid as black dots and red marks, respectively. Note that the red marks

apparently within the ellipsoid are in fact located in front of or behind it. The share of points inside the ellipsoid is

again exactly 1 − α.

Appendix B.3. Optimization towards sparsity

Figure B.28 shows an example of how the loss function in Equation (14) evolves as the algorithm described in

Section 4.1 is applied to the output of the unconstrained sampler that has been postprocessed with the WOP procedure

of Aßmann et al. (2016). The scenario that is analyzed is K3m2_1pf, as described in Section 5.2. In the left panel,
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Figure B.27: 95% highest posterior density ellipsoid for K = 3, built by first expanding the unit ball, then applying a rotation and
a translation. Top row shows axes 1 and 2, middle row axes 1 and 3, and bottom row axes 2 and 3. Original data points shown in
black (inside the ellipsoid) and red (outside the ellipsoid) in the panels in the right column.
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a single optimization is considered, where the algorithm proceeds through the axes in a pairwise fashion, addressing

two dimensions of the hyperellipsoids at a time, as described at the end of Section 4.1. Each iteration therefore refers

to a (Givens) rotation for one pair of axes. Convergence is reached after approximately 120 steps. In the right panel,

the same optimization is repeated 50 times, with randomly chosen starting values for the rotation angles. The value

of the loss function at convergence is very similar across repetitions. Sometimes it takes more than 500 iterations for

the algorithm to converge. Usually, however, the value of the loss function is minimized after less than 50 iterations.

Figure B.29 shows the Givens rotation angles for the same example, as implied by the choice of H∗ in each iteration

of the algorithm.

Throughout the simulation study and the empirical application, we used α = 0.05 to construct the HPD hyper-

ellipsoids that determine the sparse structures in Λ. Therefore, we provide an example to illustrate how the results

change if α is varied. Reducing α makes the HPD hyperellipsoids wider, so we should see more shrinkage and hence,

more sparsity. For the scenario K3m2_1pf, we start with α = 0.1, for which the resulting estimate of Λ is shown in the
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first panel of Figure B.30. Reducing α to 0.05 yields a pattern with five additional zero elements and two additional

nonzero elements in mode 1, whereas mode 2 remains unchanged. The resulting estimate of Λ is shown in the second

panel of Figure B.30. Eventually, we reduce α further to 0.01. The resulting pattern has 13 additional zero elements

and one additional nonzero element in mode 1 and 17 additional zero elements and three additional nonzero elements

in mode 2. The resulting estimate of Λ is shown in the third panel of Figure B.30. The degree of sparsity is increased

when reducing α, though the identified sparse structure for lower values of α is not perfectly, but closely, nested in the

structure obtained for higher values of α. Furthermore, we observe that as α is reduced, estimated nonzero loadings

are larger in absolute terms.

Figure B.28: Loss function in Equation (14) shown for scenario K3m2_1pf. The left panel shows a single optimization with
iterative pairwise axis (Givens) rotations. The right panel shows the same for 50 optimizations, using different randomly chosen
starting points.
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Figure B.29: Givens rotation angles implied by the optimal H∗ for the pairwise axis rotations for scenario K3m2_1pf. The blue,
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Figure B.30: Results for scenario K3m2_1pf for different choices of α, showing two modes for each choice of α.
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Appendix B.4. Ex-post clustering of factor draws

The posterior output of the sparse permutation sampler has 2K K! modes. Posterior mode identification will assign

each factor draw f (m)
k = { f (m)

kt |t = 1, . . . ,T }, k = 1, . . . ,K,m = 1, . . . ,M to one of K clusters, if we neglect the sign

switch, i.e. if we sign-adjust appropriately the factor draws. If multiple sparse factor representations are possible, the

posterior output will display a multiple of 2K K! modes. In this case, the factor draws f (m)
k will group into G ≥ K

clusters. To sort out the posterior output, we set up a mixture model with mixture indicator z(m)
k = {1, . . . ,G} which

indicates the cluster g = {1, . . . ,G} with which factor draw f (m)
k is associated. We define the following hierarchical

prior model

P(z(m)
k = g) = ηg, g = 1, . . . ,G, (B.1)

η = (η1, . . . , ηG) ∼ D(e0, . . . , e0), with e0 = (G − 1)/2, (B.2)

π( f (m)
k |z

(m)
k = g) ∼ N

(
fg,Fg

)
, where Fg = diag(Fg1, . . . ,FgT ),

and

π(fg) ∼ N (0T×1, IT ) , Fgt ∼ IG(s0,S0).

The prior for the mixture indicator (B.1)-(B.2) is uniform discrete and the Dirichlet specification with e0 < (G − 1)/2

allows for empty clusters ex-post, Rousseau and Mengersen (2011).

An estimate of the clusters and cluster association for each draw is obtained by sampling iteratively over the

following steps:

1. Update cluster association of each factor draw f (m)
k , k = 1, . . . ,K, m = 1, . . . ,M: π

(
z(m)

k | f
(m)
k , fg,Fg, η

)
. The

posterior probability of cluster association is proportional to

P
(
z(m)

k = g| f (m)
k , fg,Fg, η

)
∝ |Fg|

−1/2 exp

−0.5
T∑

t=1

(sad( f (m)
kt ) − fgt)2

Fgt

 ηg. (B.3)

The expression sad( f (m)
kt ) means sign adjustment according to

sad( f (m)
kt ) =


f (m)
kt if

T∑
t=1

( f (m)
kt − fgt)2 <

T∑
t=1

(− f (m)
kt − fgt)2

− f (m)
kt if

T∑
t=1

( f (m)
kt − fgt)2 >

T∑
t=1

(− f (m)
gt − fgt)2

.

This operation adjusts the sign of those draws which are negatively correlated to the factor mean due to random

sign switching applied during sampling.

Simulate U ∼ (0, 1) and set z(m)
k equal to

g =

 G∑
l=1

I


 l∑

j=1

P(z(m)
k = j|·)

 ≤ U


 + 1,
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where I {·} represents the indicator function and P(z(m)
k = j|·) are the normalized posterior cluster probabilities

obtained from (B.3).

2. Update the cluster association probabilities: π(η|z) ∼ D(e1, . . . , eG) with eg = e0 + Ng, Ng =
∑
k,m

I{z(m)
k = g},

g = 1, . . . ,G.

3. Update the factor representative fg, i.e. the mean path of factors, in cluster g = 1, . . . ,G: π
(
fg|z, f

)
∼ N

(
f̄g, F̄g

)
,

with moments

F̄g = (NgF−1
g + IT )−1 and f̄g = F̄g

F−1
g

∑
k,m

sad( f (m)
k )I{z(m)

k = g}

 .
4. Update the time-specific variance of factors in cluster g: π

(
Fgt |z, fg, f

)
∼ IG

(
sgt,Sgt

)
with

sgt = s0 + 0.5Ng and Sgt = S0 + 0.5
∑
k,m

(sad( f (m)
kt ) − fgt)2I{z(m)

k = g}.

For factors, we set s0 = 2 and S0 = 1. When we set up a mixture model for factors stacked with factor loadings,

we set s0 = .3125 and S0 = 5 for factor loadings.
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Appendix C. Simulation

Appendix C.1. Orthogonal matrices for minimal correlation

In order to keep rotations of factors and loading matrices as far apart from each other as possible, consider that

by assumption of static uncorrelated factors with identical unit variances, i.e. F ∼ (0, IK), we have E(FF′) = IK .

Transforming the factors by an orthogonal matrix D ∈ O(K) yields F̃ = DF. Minimizing the variance between all

members of the initial set of factors and all members of the rotated set of factors is therefore identical to minimizing

the largest absolute element of the matrix D. The covariance matrix of the initial and the rotated factors thus becomes

Cov
((

F F̃
))
=

IK D

D′ IK

 .
If more than two modes are desired, use the result that for two orthogonal matrices D1 and D2, the matrix D1D2

is also orthogonal. Therefore, to obtain m modes that minimize the absolute correlation between any two factors, or-

thogonal matrices D1 to Dm−1 are required, and, defining D0 = I, it must hold that the largest absolute matrix elements

of any product D′iD j with i , j and i, j ∈ {0, . . . ,m} becomes as small as possible.

Two interesting results are explained in the following: First, for m = 2 and small values of K, minimizing the

largest absolute element of the matrix D yields the same result as minimizing the variance of the absolute elements of

D. Moreover, if a solution for K1 and K2 has been found, say, DK1 and DK2 , where K1 = K2 may hold, a solution for

K1K2 is found as DK1 ⊗ DK2 .

Consider e.g. the case K = 2. The rotation matrix that minimizes the angles between F and FD(2) is either

D(2)
1 =


1
√

2

1
√

2
−

1
√

2

1
√

2

 or D(2)
2 =


1
√

2
−

1
√

2
1
√

2

1
√

2

, as shown in Figure C.31, where D(2)
2
′
= D(2)

1 .

Figure C.31: Minimal correlation solutions for 2, 3 and 4 modes in the 2-dimensional case.
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Figure C.32: Three different minimal correlation solutions for 2 modes in the 3-dimensional case.
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Next, consider the case K = 3. The rotation matrix that minimizes the angles between F and FD can now take

several different forms, one of which is D(3) =


−

1
3

2
3

2
3

2
3
−

1
3

2
3

2
3

2
3
−

1
3

. Figure C.32 shows three solutions for two modes in

the 3-dimensional case.

Regarding K = 4, the above mentioned result can be used, i.e., solutions obtain as D(2)
1 ⊗D(2)

1 , D(2)
1 ⊗D(2)

2 , D(2)
2 ⊗D(2)

1 ,

and D(2)
2 ⊗ D(2)

2 , with

D(2)
1 =


1
√

2

1
√

2
−

1
√

2

1
√

2

 and D(2)
2 =


1
√
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−

1
√

2
1
√

2

1
√

2

 .
This yields

D(4)
1 =


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4
′
= D(4)

1 and D(4)
3
′
= D(4)

2 .
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Appendix D. Results for overfitted estimate

The following results were obtained for a factor model fitted to the simulated data set dataN60K4m2_2pf (see

Subsection 5.2) with an over-fitted number of factors K = 5.

The unconstrained rotation approach consistently produces a sparsity indicator matrix ∆ that contains an entire

column of zeros. The corresponding loading matrices Λ estimated for both identified modes are shown in Figure

D.33. The patterns for the first four factors, and particularly the pervasive factors, are similar to those in Figure 13,

and accordingly, the redundant factor has zero loadings across all units.

Figure D.33: K = 5, unconstrained rotation, scenario K4m2_2pf, heat plot of posterior mean factor loadings.
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For the sparse permutation sampler, we first run a chain of 10,000 draws, we initialize 15 parallel chains by random

rotation of a factor loading draw. We discard the first 6,000 draws from each chain, leaving us with 64,000 draws for

posterior evaluation. To post-process the MCMC output (see Subsection 4.2), we stack factor and factor loading draws,

we set G = 10 and specify a Dirichlet prior on cluster probability that allows for empty groups, e0 = .01(G/2 − 1). If

all factors were relevant in both modes, each cluster should be populated by virtually 32,000 draws. Table D.7 shows

that all clusters are populated, although some of them with a very low number of draws (see the line labelled All).

For example, less than 10,000 draws are assigned to clusters labelled Factors 3 and 6, respectively. On the other hand,

64,000 draws are assigned to clusters labelled Factors 2 and 4, respectively. These two clusters obviously correspond

to the two simulated pervasive factors.
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Before visualizing the results, we proceed and retain those draws (m) which represent a set of unique 5 factors.

Table D.8 lists those factor sets that were drawn more than 1,000 times (For expositional convenience we omit 1, 086

draws assigned to the set {2, 4, 5, 7, 10}). We observe again that Factors 2 and 4 are elements of each set, while some

other factors (like Factors 9 and 10) are elements of many but not all sets.

Table D.7: K = 5, sparse permutation, scenario K4m2_2pf. Clusters of factors and factor loadings draws. All: Total number of
factor-specific MCMC draws; Retained: Number of MCMC draws accross factor combinations retained for posterior evaluation,
i.e. those factor combinations with more than 1,000 assigned posterior draws (see also Table D.8).

Factor 1 2 3 4 5 6 7 8 9 10
All 13,725 64,000 9,551 64,000 27,809 9,859 12,251 18,589 57,913 42,304
Retained 13,722 62,049 8,582 62,049 25,882 8,917 12,247 18,581 57,867 40,349

Figures D.34 to D.36 visualize the processed posterior output. Figure D.34 displays the heatmap of the posterior

median of factor-specific loadings and non-zero loading probabilities. Factors 2 and 4 load on many series, and the

pattern of loadings coincides with the heatmap for loadings of Factors, respectively, 2 and 1 in Figure 14 (Estimate

for K = 4). The heatmap reveals that we estimated an over-fitted number of factors, as only 3 of the remaining factors

have non-zero loadings. Figures D.35 and D.36 plot the heatmap for, respectively, the median of factor loadings

and the posterior mean of non-zero loading probabilities of each of the factor sets displayed in Table D.8. Each plot

uncovers that we estimated an over-fitted number of factors. In each plot, the posterior median of all loadings of one

of the factors is zero and the posterior mean of non-zero loading probabilities is virtually zero.

Facing such a posterior output, we would re-estimate the factor model for K = 4.

Table D.8: K = 5, sparse permutation, scenario K4m2_2pf. Sorted output for overfitted estimate. Factor combinations and number
of draws. See Figures D.35 and D.36 for, respectively, the posterior median of factor loadings and the posterior mean of non-zero
probabilities of each sorted factor combination.

Combination Draws Combination Draws Combination Draws
{1, 2, 4, 5, 9} 4,634 {1, 2, 4, 5, 10} 1,323 {1, 2, 4, 9, 10} 7,765
{2, 3, 4, 5, 9} 3,110 {2, 3, 4, 9, 10} 5,472 {2, 4, 5, 6, 9} 2,934
{2, 4, 5, 8, 9} 4,558 {2, 4, 5, 8, 9} 6,464 {2, 4, 5, 8, 10} 1,773
{2, 4, 6, 9, 10} 5,983 {2, 4, 7, 9, 10} 6,603 {2, 4, 8, 9, 10} 10,344
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Figure D.34: K = 5, sparse permutation, scenario K4m2_2pf. Clustered output for overfitted estimate. Factor-specific median
factor loadings. Evaluated for factor-specific draws across factor combinations displayed in Table D.8.
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Figure D.35: K = 5, sparse permutation, scenario K4m2_2pf. Sorted output for overfitted estimate. Median factor loadings. See
Table D.8 for the number of draws sorted into each factor combination.
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Figure D.36: K = 5, sparse permutation, scenario K4m2_2pf. Sorted output for overfitted estimate. Mean non-zero probability.
See Table D.8 for the number of draws sorted into each factor combination.
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