Lecture 3B: Macroeconomic Models with Financial Intermediaries

Zhiguo He

University of Chicago

Booth School of Business

September, 2017, Gerzensee
Introduction

- Theoretical papers
 - Holmstrom and Tirole (1997 QJE): two period model
 - He and Krishnamurthy (2012 Restud, 2013 AER): dynamic (continuous-time) model, better connecting to canonical finance framework
 - Brunnermeier and Sannikov (2014, AER): dynamic (continuous-time) model, better connecting to macro framework

- Connection to traditional empirical asset pricing literature
 - Adrian-Etula-Muir (2014): broker-dealer leverage alone can price FF 25 portfolios
 - He-Kelly-Manela (2017): Primary Dealer (market) capital ratio factor can consistently price a wide range of asset classes, including sophisticated ones like Options and CDS
A Model of Capital and Crises, 2012

- A General Equilibrium (GE) model where intermediaries, rather than households, are marginal.
 - Frictions are endogenously derived based on optimal contracting considerations. This affects prices.
 - Contracting takes future price dynamics into consideration.

- Mechanism: Intermediation capital affects participation/risk-sharing.
- In normal times households participate through intermediation;
- When intermediaries suffer losses,
 - Households “fly” away from intermediaries to riskless assets, driving down interest rate.
 - Distressed intermediary sector averse to hold risky positions, risk premium goes up.
Unit supply of risky asset with dividend \(\frac{dD_t}{Dt} = gd_t + \sigma dZ_t \), and riskless asset in zero-net supply.

- Risky asset price \(P_t \) and interest rate \(r_t \) are determined in GE.

Households \(\mathbb{E} \left[\int_0^\infty e^{-\rho h t} \ln c_t^h dt \right] \).

- Limited participation in risky asset market. They invest in intermediaries.

Specialists \(\mathbb{E} \left[\int_0^\infty e^{-\rho t} \ln c_t dt \right] \), \(\rho < \rho^h \). They run intermediaries.

- Only intermediaries/specialists can invest in the risky asset. They are marginal investors.
- Derive Intermediation Constraint from moral hazard primitives.
- **Intermediation**: 1) Short-term contracting between agents; 2) Equilibrium in competitive intermediation market;
 - No friction in short-term-borrowing/repo market.
- **Asset pricing**: 3) Optimal consumption/portfolio decisions; 4) GE.
The Heart of the Model: Capital Constraint

- Say household with wealth W_t^h, and specialist with wealth W_t.
 - Given specialist’s equity contribution W_t in the intermediary, household contributes T_t^h as equity investment.
 - Capital Constraint: T_t^h is capped at mW_t.

- Intermediation capacity mW_t is increasing in the specialist's contribution W_t, as reflection of agency friction.

- How to interpret m?
 1. Intermediary capital requirement: outside/inside contribution ratio; (Holmstrom-Tirole, QJE)
 - Officers/Directors inside holdings in financial industry around 18%.
 2. Incentive contract—the performance share of hedge fund managers. Think of “2 and 20.”
 3. Mutual funds’ flow-performance sensitivity. Specialist’s W_t tracks his past gains and losses (Shleifer-Vishny, JF, Limits to Arbitrage)
Intermediation Constraint: An Example

- Say $m = 1$, $W_t^h = 80$. Comparing W_t^h to mW_t.

- **Unconstrained Region:** $W_t = 100$. Then $T_t^h = W_t^h = 80$;
 - Zero net debt. Risky asset price $P_t = W_t + W_t^h = 180$.
 - Fund’s total equity 180. Intermediary holds risky asset without leverage, first-best risk sharing.

- **Constrained Region:** $W_t = 50$. Then $T_t^h = mW_t = 50$;
 - Intermediary’s total equity is $50 + 50 = 100$. But $P_t = 130$.
 - In equilibrium, the intermediary borrows 30 from the debt market;
 - It is supplied by households $W_t^h - T_t^h = 30$.
 - Specialist and household have equal shares in the intermediary;
 - Specialist’s leveraged position in risky asset: $\alpha = \frac{50+15}{50} = 130\%$.
 - Risk premium has to adjust to make this high leverage optimal.
Risk Premium and Interest Rate

\[w_c^{(m=4)} = 13.02 \]
\[w_c^{(m=6)} = 9.07 \]

\[w^{(m=6)} = 0.07 \]
\[w^{(m=4)} = 13.02 \]
Cyclicality of Leverage across Intermediaries

Ang, Gorovvy and Van-Inwegen (2010)

- Commercial banking sector, market leverage is strongly countercyclical, but book leverage is procyclical
Primary Dealers’ Capital Ratio

- Primary Dealers (designated by NYFed to implement monetary policy); constructing capital ratio

$$\frac{\sum_i \text{MarketEquity}_{it}}{\sum_i (\text{MarketEquity}_{it} + \text{BookDebt}_{it})}$$
Road Map

- Intermediation contracts;
 - IC constraints, maximum exposure supply, etc.
- Agents’ consumption/portfolio decisions;
- Competitive equilibrium in intermediation markets;
- Equilibrium asset prices.
- Conclusion.
Intermediation Stage Game

- **Short-term** contracts only. At time t, contract from t to $t + dt$.

- Household with wealth W^h_t, and specialist with wealth W_t.
 - Household contributes T^h_t, specialist T_t. $T^l_t = T^h_t + T_t$.

- Specialist in charge of intermediary. **Moral Hazard:**
 1. Unobserved due diligence action $s_t = \{0, 1\}$.
 - Shirking ($s_t = 1$) reduce return by X_t but brings private benefit B_t.
 2. Unobserved portfolio choice E^l_t (dollar exposure to risky asset);
 - Undoing activity. Not crucial.

- Fund's return $E^l_t (dR_t - r_t dt) + T^l_t r_t dt - s_t X_t dt$, private benefit
 $s_t B_t dt$. Focus on implementing working.
 - Risky asset return $dR_t = \frac{dP_t + D_t dt}{P_t}$ and interest rate r_t are endogenous.
Intermediation Contract

- **Affine contracts** for sharing returns.
 - β_t: specialist’s share; $\hat{K}_t\,dt$: transfer to specialist.

- $\Pi_t \equiv \left(T_t, T^h_t, \beta_t, \hat{K}_t \right) \in [0, W_t] \times [0, W^h_t] \times [0, 1] \times \mathbb{R}$.

- Define $K_t \equiv \left(\beta_t T^l_t - T_t \right) r_t + \hat{K}_t$.

- **Dynamic budget constraint**

 \[
 \begin{aligned}
 dW_t &= W_t r_t \, dt - c_t \, dt + \beta_t \mathcal{E}^l_t \left(dR_t - r_t \, dt \right) + K_t \, dt, \\
 dW^h_t &= W^h_t r_t \, dt - c^h_t \, dt + (1 - \beta_t) \mathcal{E}^l_t \left(dR_t - r_t \, dt \right) - K_t \, dt.
 \end{aligned}
 \]

- Reduce contract to (β_t, K_t). **Sharing rule** and **fee**.
 - Specialist chooses $\mathcal{E}_t = \beta_t \mathcal{E}^l_t$. Household buys risk exposure $\mathcal{E}^h_t = (1 - \beta_t) \mathcal{E}^l_t$ from intermediary.
 - In competitive intermediation market, the fee will take some simple linear form.
IC Constraint and Maximum Household’s Exposure

- \(\mathcal{E}_t^l \) fund’s total risk exposure. S: \(\mathcal{E}_t = \beta_t \mathcal{E}_t^l \), H: \(\mathcal{E}_t^h = (1 - \beta_t) \mathcal{E}_t^l \).
- Specialist net worth

\[
dW_t = W_t r_t dt - c_t dt + \beta_t \mathcal{E}_t^l (dR_t - r_t dt) + K_t dt + s_t (B_t - \beta_t X_t) dt
\]

- IC constraint: a lower bound on \(\beta_t \). Skin in the game
 - No shirking: \(\beta_t X_t - B_t \geq 0 \Rightarrow \beta_t \geq \frac{B_t}{X_t} = \frac{1}{1+m} \).
- Specialist always chooses \(\beta_t \mathcal{E}_t^l = \mathcal{E}_t^* \) independent of \(\beta_t \).
 - In the paper we show \(\mathcal{E}_t^* \) is independent of fee \(K \).
- Household exposure from the contract

\[
\mathcal{E}_t^h = (1 - \beta_t) \mathcal{E}_t^l = \frac{1 - \beta_t}{\beta_t} \mathcal{E}_t^*.
\]

- Plugging \(\beta_t \geq \frac{1}{1+m} \), household risk exposure \(\mathcal{E}_t^h \leq m \mathcal{E}_t^* \).
Key Intuition and Equity Implementation

- The households risk exposure is capped due to agency frictions

\[\mathcal{E}_t^h \leq m \mathcal{E}_t^* . \]

- Cap on how to share the aggregate risk \(\mathcal{E}_t^h + \mathcal{E}_t^* = \mathcal{E}_t^l \) between households and specialists.
- Incentive provision implies that specialists have to bear sufficient risk.

- In bad times this friction kicks in.
 - Even if specialists net worth is low, they still have to bear large risk.

- **Equity implementation**: Households (outsiders) cannot hold more than \(\frac{m}{1+m} \) (equity) shares.

- **Equity capital constraint**: Given specialist’s equity \(W_t \), households can make at most \(mW_t \) equity contributions.

- Recall contract \((\beta_t, K_t) \). We have derived equilibrium \(\beta_t \). What determines fee \(K_t \)?
 - Households pay competitive fees in the intermediation market.
Competitive Intermediation Market

Definition. At time t, specialists make offers (β_t, K_t) to specialists; households can accept/reject the offers. The intermediation market reaches equilibrium if:

1. β_t is incentive compatible for each specialist.
2. There is no coalition of households and specialists, such that some incentive-compatible contracts can make households strictly better off while specialists weakly better off.

Lemma 4: Given symmetry at the beginning of time-t, the resulting intermediation equilibrium is symmetric.

Lemma 5: Households face an equilibrium per-unit-exposure price of $k_t \geq 0$: to purchase \mathcal{E}_t^h, he has to pay $K_t = k_t \mathcal{E}_t^h$.

- Idea: equivalence between **Core** and **Walrasian equilibrium**; coalition can chop off exposure in a linear way.
Households’ Consumption/Portfolio Rules

- Log investors. Simple consumption rule; myopic mean-variance portfolio choice.

- Risky asset return \(dR_t = \left(\pi_{R,t} + r_t \right) dt + \sigma_{R,t} dZ_t \).
 - \(\pi_{R,t} \) is risk premium, \(\frac{\pi_{R,t}}{\sigma_{R,t}} \) is the so-called Sharpe ratio

- Household

\[
\text{max} \quad \mathbb{E} \left[\int_0^\infty e^{-\rho h t} \ln c_t^h \, dt \right] \quad \text{subject to}
\]

\[
dW_t^h = W_t^h r_t \, dt - c_t^h \, dt + \mathcal{E}_t^h \left(dR_t - r_t \, dt \right) - k_t \mathcal{E}_t^h \, dt.
\]

- Relative to standard problem, households achieve exposure \(\mathcal{E}_t^h \) by paying per-unit-cost of \(k_t \).

- Optimal consumption \(c_t^{h^*} = \rho^h W_t^h \), optimal exposure \(\mathcal{E}_t^{h^*} = \frac{\pi_{R,t} - k_t}{\sigma^2_{R,t}} W_t^h \).
 - Optimal risk exposure is decreasing in exposure price \(k_t \).
Specialists’ Consumption/Portfolio Rules

- Specialist supplies exposure $\frac{1-\beta_t}{\beta_t} \mathcal{E}_t^*$. Given exposure price k_t, he gets intermediation fees $K_t dt = k_t \left(\frac{1-\beta_t}{\beta_t} \mathcal{E}_t^* \right) dt$.

- The specialist is solving: $\max_{\{c_t, \mathcal{E}_t, \beta_t\}} \mathbb{E} \left[\int_0^\infty e^{-\rho t} \ln c_t dt \right]$ subject to

$$dW_t = \mathcal{E}_t (dR_t - r_t dt) + W_t r_t dt - c_t dt + \max_{\beta_t \in \left[\frac{1}{1+m}, 1 \right]} \left(\frac{1-\beta_t}{\beta_t} \right) \mathcal{E}_t^* k_t dt.$$

- **Exposure supply schedule:** $\beta_t^* = \frac{1}{1+m}$ if $k_t > 0$, otherwise $\beta_t^* \in \left[\frac{1}{1+m}, 1 \right]$ if $k_t = 0$.

- Solution: $c_t^* = \rho W_t$ and $\mathcal{E}_t^* = \frac{\pi R_t}{\sigma^2_{R,t}} W_t$.

- Total exposure fee is linear in W_t, as if getting a better return from their wealth. Traditional log-agent results apply.
Equilibrium in Competitive Intermediation Market

- Exposure demand $E^h_t (k_t) = \frac{\pi_{R,t} - k_t}{\sigma^2_{R,t}} W^h_t$; exposure supply is free but with maximum $mE^*_t = m\frac{\pi_{R,t}}{\sigma^2_{R,t}} W_t$.

 ▶ As intermediary portfolio choice is unobservable, maximum exposure supply is determined only by specialist’s wealth and asset prices
 ▶ We also solve the case with observable portfolio choice, so supply is increasing with k_t

Proposition 1: The economy is in one of two equilibria:

1. Unconstrained region $E^h_t (k_t = 0) < mE^*_t$, and $\beta_t < \frac{1}{1+m}$.
 ▶ Excess intermediation supply, zero rent.

2. Constrained region $E^h_t (k_t > 0) = mE^*_t$, and $\beta_t = \frac{1}{1+m}$.
 ▶ Scarce intermediation supply, positive rent.
Unconstrained vs. Constrained Regions (1)

Unconstrained Region

Exposure demand:

\[
\left(\frac{\pi_{R,t} - k_t}{\sigma_{R,t}^2} \right) W_t^k
\]

Exposure supply:

\[
\begin{cases}
0, \frac{m \left(\frac{\pi_{R,t}}{\sigma_{R,t}^2} \right) W_t}{m \left(\frac{\pi_{R,t}}{\sigma_{R,t}^2} \right) W_t}
\text{if } k_t = 0, \\
\frac{m \left(\frac{\pi_{R,t}}{\sigma_{R,t}^2} \right) W_t}{m \left(\frac{\pi_{R,t}}{\sigma_{R,t}^2} \right) W_t}
\text{if } k_t > 0.
\end{cases}
\]
Unconstrained vs. Constrained Regions (1)

Constrained Region

price k_t

Exposure supply:
\[
\begin{cases}
0, m \left(\frac{\pi_R}{\sigma_R^2} \right) W_t & \text{if } k_t = 0, \\
m \left(\frac{\pi_R}{\sigma_R^2} \right) W_t & \text{if } k_t > 0.
\end{cases}
\]

Exposure demand:
\[
\left(\frac{\pi_{R_t} - k_t}{\sigma_{R_t}^2} \right) W_t^k
\]
Equilibrium Asset Prices: Solution

- We derive everything in closed form.
- State variables \((D_t, W_t)\). Scales with \(D_t\).
- Uni-dimensional state variable \(w_t \equiv W_t / D_t\) captures wealth distribution.
- Consumption rules \(c_t^* = \rho W_t^h\), \(c_t^{h*} = \rho^h W_t^h\).
- Zero net debt \(W_t + W_t^h = P_t\), goods clearing \(c_t^* + c_t^{h*} = D_t\). So
 \[
 \frac{P_t}{D_t} = \frac{1}{\rho^h} + \left(1 - \frac{\rho}{\rho^h}\right) w_t.
 \]
- Specialist’s risky position \(\alpha_t = \frac{P_t}{(1+m)W_t} > 1\) in constrained region.
The economy is in constrained region whenever

\[w_t = \frac{W_t}{D_t} < w^c \equiv \frac{1}{m\rho^h + \rho}. \]

- Unconstrained region, \(w_t \) moves deterministically. Constrained region, specialists take a higher leverage than households, so \(w_t \) drops when fundamental falls.

- When intermediary capital \(W_t \) falls,
 - Risk premium rises;
 - Interest rate falls;
 - Volatility rises;
 - Correlation endogenously rises.
\(\alpha_t\): intermediary's risk position Asset/Equity

<table>
<thead>
<tr>
<th></th>
<th>Uncon. Region</th>
<th>Con. Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_t)</td>
<td>1</td>
<td>(\frac{1 + (\rho^h - \rho)w_t}{(1+m)\rho^h w_t} > 1)</td>
</tr>
<tr>
<td>(\sigma_{R,t})</td>
<td>(\sigma)</td>
<td>(\frac{\sigma}{1 + (\rho^h - \rho)w_t} \left(\frac{(1+m)\rho^h}{m\rho^h + \rho} \right) > \sigma)</td>
</tr>
<tr>
<td>(\pi_{R,t})</td>
<td>(\sigma^2)</td>
<td>(\frac{\sigma^2}{w_t(m\rho^h + \rho)} \left(\frac{(1+m)\rho^h}{m\rho^h + \rho} \right) \left(\frac{1}{1 + (\rho^h - \rho)w_t} \right) > \sigma^2)</td>
</tr>
<tr>
<td>(r_t)</td>
<td>(\rho^h + g - \sigma^2 + \rho \left(\rho - \rho^h \right) w_t)</td>
<td>(-\sigma^2 \left[\frac{\rho \left((1+m) \left(\frac{1}{w_t} - \rho \right) - m^2 \rho^h \right) w_t + (m\rho^h)^2}{(1-\rho w_t)(\rho + m\rho^h)^2} \right])</td>
</tr>
</tbody>
</table>
- Asymmetry. Crisis like.
- When constraint binds $w_t < w^c$, specialist bears disproportionately large risk, causing more volatile pricing kernel.
- Flight to quality. 1) Specialists precautionary savings. 2) Household fly to debt market.
Concluding Remarks

- Canonical intermediation friction meets canonical GE asset pricing models.
- Calibratable, easy to quantify effects.
- We have another paper where specialists have general CRRA power utility, with capital constraint as given.
 - Add in labor income, debt households (create leverage in unconstrained region), and other necessary twists...
 - Study the crisis dynamics (especially recovery), government liquidity injection policies, etc.
Intermediary Asset Pricing (2013)

Specialists
(1) Portfolio choice for intermediary
(2) Wealth = \(W_t \)
(3) Capital constraint

HOUSEHOLDS

OLG structure
(1) Labor income
(2) Consume
(3) Save (portfolio choice) to leave bequest
(4) Wealth = \(W_t^n \)
(5) Minimum of \(\lambda W_t^b \) in bond

H_\text{t}
EQUITY

DEBT

SPECIALISTS/INTERMEDIARIES

RISKY ASSET MARKET

RISKLESS DEBT
(intermediary repo)
Model

- Risky asset (unit supply) with dividend
 \[\frac{dD_t}{D_t} = g dt + \sigma dZ_t; \]

- Labor income \(lD_t dt \), so the total endowment is
 \[(1 + l) D_t dt \]

- Price/dividend ratio \(p_t = P_t / D_t \) (so \(dR_t = (D_t dt + dP_t) / P_t \)) and interest rate \(r_t \) to be solved

- \(D \) scales the economy, "wealth distribution" key state variable

- State variable in the paper: the fraction of specialist’s wealth
 \[x_t = W_t / P_t \]
 - It is \(\eta_t \) in Brunnermeier-Sannikov
 - We are solving for \(p(x) \) and \(r(x) \)
Assumptions

- Households wealth W^h and specialist wealth W, with $W + W^h = P$
- **Assumption:** λ fraction of household wealth, i.e. λW^h is placed in debt, supplied by intermediaries
- **Assumption:** Equity household in charge of $(1 - \lambda) W^h_t$, choosing $\alpha^h_t \in [0, 1]$ to put in intermediaries with constraint
 \[\alpha^h_t (1 - \lambda) W^h_t \equiv H_t \leq mW_t \]
- Intermediaries are managed by specialists $\mathbb{E} \left[\int_0^\infty e^{-\rho t} \frac{c^{1-\gamma}}{1-\gamma} dt \right]$
- Specialists: put their own wealth in as equity; get households equity capital; choose α^l_t for the intermediary so
 \[\widetilde{dR}_t = r_t dt + \alpha^l_t (dR_t - r_t dt) \]
- Households wealth evolution
 \[
 dW^h_t = (lD_t - \rho W^h_t) dt + W^h_t r_t dt + \alpha^h_t (1 - \lambda) W^h_t \left(\widetilde{dR}_t - r_t dt \right) \\
 = (lD_t - \rho W^h_t) dt + W^h_t r_t dt + \alpha^h_t (1 - \lambda) W^h_t \alpha^l_t (dR_t - r_t dt)
 \]
Steps of Deriving Equilibrium (1)

- Specialist is marginal investor. Faces no constraints. Portfolio choice must be an optimal choice for him.
- His Euler equation is always valid. Household is always constrained.
- Easier to trace households financial wealth scaled by dividend

\[
y_t = \frac{P_t - W_t}{D_t} = \frac{P_t - W_t}{P_t} \frac{1}{p_t} = \frac{1 - w_t}{p_t}
\]

- Log household implies \(c^h_t = \rho W^h_t = \rho y_t D_t \)
 - We need short-lived household who does not value future labor income.
- Goods market clearing implies

\[
c_t = (1 + l) D_t - c^h_t = (1 + l - \rho y_t) D_t
\]

- Euler equation for specialist (\(\Lambda_t = e^{-\rho t} c^{-\gamma} \))

\[
-\rho dt - \gamma E_t \left[\frac{dc_t}{c_t} \right] + \frac{1}{2} \gamma(\gamma + 1) \text{Var}_t \left[\frac{dc_t}{c_t} \right] + \mathbb{E}_t [dR_t] = \gamma \text{Cov}_t \left[\frac{dc_t}{c_t}, dR_t \right]
\]

\[
\rho dt - \gamma \mathbb{E}_t \left[\frac{dc_t}{c_t} \right] + \frac{\gamma(\gamma + 1)}{2} \text{Var}_t \left[\frac{dc_t}{c_t} \right] + r_t dt = 0
\]
Steps of Deriving Equilibrium (2)

- Denote P/D ratio $F(y) \equiv p(x)$
- **Goal:** derive the equilibrium evolution of y_t and hence c_t
- Say $dy_t = \mu_y dt + \sigma_y dZ_t$ where μ_y and σ_y to be solved
- Households’ effective portfolio exposure to risky asset

\[\theta_S(y_t) = \alpha^l_t \alpha^h_t (1 - \lambda) \]

- Budget equation for households implies

\[
D_t \left[(\mu_y dt + \sigma_y dZ_t) + y_t (g dt + \sigma dZ_t) + \sigma_y \sigma dt \right] \overset{\text{Ito's lemma}}{=} d (y_t D_t) = dW^h_t
\]

\[\overset{\text{Budget Equation}}{=} (ID_t - \rho W^h_t) dt + W^h_t r_t dt + \alpha^l_t \alpha^h_t (1 - \lambda) W^h_t (dR_t - r_t dt) \]

- Divide both sides by D_t we have

\[
\left(\mu_y + gy_t + \sigma_y \sigma \right) dt + (\sigma_y + \sigma_y y_t) dZ_t
\]

\[= \left(l - \rho y_t \right) dt + y_t r_t dt + \theta_S(y_t) y_t (dR_t - r_t dt) \]
Steps of Deriving Equilibrium (3)

- Write out dR_t in terms of $F(y)$

$$dR_t = \frac{D_t dt + dP_t}{P_t} = \frac{1}{F(y)} dt + \frac{dP_t}{P_t}$$

where $dP_t = d \left(F(y_t) D_t \right)$ so

$$\frac{dP_t}{P_t} = g dt + \sigma dZ_t + \left[\frac{F'(y_t)}{F(y_t)} \left(\mu_y dt + \sigma_y dZ_t \right) + \frac{F''(y_t)}{2F(y_t)} \sigma_y^2 dt \right] + \frac{\sigma F'(y_t) \sigma_y}{F(y_t)} dt$$

- Equating volatility terms:

$$\sigma_y + \sigma y_t = \theta_S (y_t) y_t \left[\sigma + \frac{F'(y_t)}{F(y_t)} \sigma_y \right] \Rightarrow \sigma_y = \frac{\sigma y_t (\theta_S (y_t) - 1)}{1 - \theta_S (y_t) y_t \frac{F'(y_t)}{F(y_t)}}$$

- Drift term μ_y follows similarly but more tedious
Steps of Deriving Equilibrium (4)

- Now figure out household equilibrium risk exposure $\theta_S(y_t)$
- Focus on the parameterization where in equilibrium
 - Unconstrained region, $\alpha^h_t = 1$ and $(1 - \lambda)W^h_t \equiv H_t < mW_t$ (equity household wants to put more, but debt household says no)
 - Constrained region, $\alpha^h_t = \frac{mW_t}{(1-\lambda)W^h_t} < 1$
- Unconstrained region: $y < y_c$ abundant intermediary capital
 - $\alpha^h_t = 1$ and $\alpha^l_t = \frac{F(y)}{F(y) - \lambda y}$
 - Derive α^l_t: risky asset is $F(y)D$, but intermediaries have equity of
 $\left(\underbrace{F(y) - y}_{\text{Specialists' wealth as equity}} + \underbrace{(1 - \lambda) y}_{\text{Equity households's equity}} \right) D = (F(y) - \lambda y)D$
 - Hence $\theta_S(y_t) = \alpha^l_t \alpha^h_t (1 - \lambda) = \frac{(1-\lambda)F(y)}{F(y) - \lambda y}$
- Constrained region: $y > y_c$, scarce intermediary capital
 - $\theta_S(y) = \frac{1}{1+m}$ (households and specialist share risk $1 : m$)
Steps of Deriving Equilibrium (5)

- With $\theta_S(y_t)$ expressed as functions of $F(y)$, we can derive μ_y and σ_y in terms of $F(y)$, $F'(y)$ and $F''(y)$
- Recall Euler equation

$$-
ho dt - \gamma \mathbb{E}_t \left[\frac{dc_t}{c_t} \right] + \frac{1}{2} \gamma (\gamma + 1) \text{Var}_t \left[\frac{dc_t}{c_t} \right] + \mathbb{E}_t [dR_t] = \gamma \text{Cov}_t \left[\frac{dc_t}{c_t}, dR_t \right]$$

- Recall evolution of specialist’s consumption growth

$$\frac{dc_t}{c_t} = \frac{d \left((1 + l - \rho y_t) D_t \right)}{(1 + l - \rho y_t) D_t}$$

- We can write down dc_t / c_t in terms of $F(y)$, $F'(y)$ and $F''(y)$
- $\mathbb{E}_t [dR_t]$ are in terms of $F(y)$, $F'(y)$, and $F''(y)$, with μ_y and σ_y
- So, eventually we arrive at an ODE in F!
- Boundary conditions $y = 0$ (specialists dominating) and $y = \frac{1 + l}{\rho}$ (households dominating)
 - They are singular boundaries to be derived from ODE itself
Crisis Recovery

<table>
<thead>
<tr>
<th>Transit to</th>
<th>Transit from 12%</th>
<th>Incremental Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>7.5%</td>
<td>0.65</td>
<td>0.47</td>
</tr>
<tr>
<td>5%</td>
<td>2.67</td>
<td>0.77</td>
</tr>
<tr>
<td>4%</td>
<td>5.56</td>
<td>2.90</td>
</tr>
</tbody>
</table>
Concluding Remarks

- We also did a bunch of policy experiment, like borrowing subsidy, Asset purchase, or TARP
- Some counterfactual predictions
 - Interest rate goes to pretty negative around -9% when risk premium is 12%
 - Volatility goes down eventually when risk premium goes to 12%
- There are no real side in this paper
- Working paper "A Macroeconomic Framework to Quantify Systemic Risk"
 - Include real side and housing
 - Model crisis as "occasionally binding constraint" and emphasize global solution method
 - In contrast to log-linearization around steady state
 - Document strong nonlinearity in the data, and perform a serious calibration