Monetary and Fiscal Policies: Optimal Policies

Behzad Diba

Georgetown University

May 2013
Research on optimal monetary policy has considered a number of different settings.
The Normative Literature

- Research on optimal monetary policy has considered a number of different settings
 - we will focus on optimal policies under "commitment," but there is also a body of work on optimal policies under "discretion"
Research on optimal monetary policy has considered a number of different settings.

- We will focus on optimal policies under "commitment," but there is also a body of work on optimal policies under "discretion."
- We will consider optimal monetary policy abstracting from fiscal issues (or assuming fiscal policy eliminates some distortions) as well as jointly optimal fiscal and monetary policies.
Research on optimal monetary policy has considered a number of different settings

- we will focus on optimal policies under "commitment," but there is also a body of work on optimal policies under "discretion"
- we will consider optimal monetary policy abstracting from fiscal issues (or assuming fiscal policy eliminates some distortions) as well as jointly optimal fiscal and monetary policies
- we will also discuss recent work on unconventional monetary policy
Research on optimal monetary policy has considered a number of different settings.

- We will focus on optimal policies under "commitment," but there is also a body of work on optimal policies under "discretion."
- We will consider optimal monetary policy abstracting from fiscal issues (or assuming fiscal policy eliminates some distortions) as well as jointly optimal fiscal and monetary policies.
- We will also discuss recent work on unconventional monetary policy.

Formal models of optimal policy typically focus on a stylized environment.
Research on optimal monetary policy has considered a number of different settings:

- We will focus on optimal policies under "commitment," but there is also a body of work on optimal policies under "discretion."
- We will consider optimal monetary policy abstracting from fiscal issues (or assuming fiscal policy eliminates some distortions) as well as jointly optimal fiscal and monetary policies.
- We will also discuss recent work on unconventional monetary policy.

Formal models of optimal policy typically focus on a stylized environment:

- Applications to the more complex (e.g., central bank) models often compare the welfare properties of simple rules within a model.
Research on optimal monetary policy has considered a number of different settings

- we will focus on optimal policies under "commitment," but there is also a body of work on optimal policies under "discretion"
- we will consider optimal monetary policy abstracting from fiscal issues (or assuming fiscal policy eliminates some distortions) as well as jointly optimal fiscal and monetary policies
- we will also discuss recent work on unconventional monetary policy

Formal models of optimal policy typically focus on a stylized environment

- applications to the more complex (e.g., central bank) models often compare the welfare properties of simple rules within a model
- or, look for "robust" rules with desirable welfare properties across different models
Contributions to the normative literature involve different assumptions about steady-state distortions (like the monopoly markup) transactions frictions that motivate the Friedman Rule distortions arising from nominal rigidities. Early research on the NK model abstracted from transactions frictions and ...cal policy eliminates steady-state distortions. The models imply a distinction between "efficient" and "inefficient" shocks. Efficient shocks affect natural output (the level that would prevail under flexible prices) and efficient (optimal) output in the same way. Inefficient shocks affect the wedge between natural and efficient output.
Contributions to the normative literature involve different assumptions about

- steady-state distortions (like the monopoly markup)
Distortions and the NK Model

- Contributions to the normative literature involve different assumptions about:
 - steady-state distortions (like the monopoly markup)
 - transactions frictions that motivate the Friedman Rule

The models imply a distinction between "efficient" and "inefficient" shocks:
- Efficient shocks affect natural output (the level that would prevail under flexible prices) and efficient (optimal) output in the same way.
- Inefficient shocks affect the wedge between natural and efficient output.
Contributions to the normative literature involve different assumptions about

- steady-state distortions (like the monopoly markup)
- transactions frictions that motivate the Friedman Rule
- distortions arising from nominal rigidities
Contributions to the normative literature involve different assumptions about
- steady-state distortions (like the monopoly markup)
- transactions frictions that motivate the Friedman Rule
- distortions arising from nominal rigidities

Early research on the NK model abstracted from transactions frictions and fiscal issues (the models assumed that fiscal policy eliminates steady-state distortions)
Contributions to the normative literature involve different assumptions about:

- steady-state distortions (like the monopoly markup)
- transactions frictions that motivate the Friedman Rule
- distortions arising from nominal rigidities

Early research on the NK model abstracted from transactions frictions and fiscal issues (the models assumed that fiscal policy eliminates steady-state distortions):

- the models imply a distinction between "efficient" and "inefficient" shocks
Contributions to the normative literature involve different assumptions about:
- steady-state distortions (like the monopoly markup)
- transactions frictions that motivate the Friedman Rule
- distortions arising from nominal rigidities

Early research on the NK model abstracted from transactions frictions and fiscal issues (the models assumed that fiscal policy eliminates steady-state distortions)
- the models imply a distinction between "efficient" and "inefficient" shocks
- efficient shocks affect natural output (the level that would prevail under flexible prices) and efficient (optimal) output in the same way
Distortions and the NK Model

- Contributions to the normative literature involve different assumptions about
 - steady-state distortions (like the monopoly markup)
 - transactions frictions that motivate the Friedman Rule
 - distortions arising from nominal rigidities

- Early research on the NK model abstracted from transactions frictions and fiscal issues (the models assumed that fiscal policy eliminates steady-state distortions)
 - the models imply a distinction between "efficient" and "inefficient" shocks
 - efficient shocks affect natural output (the level that would prevail under flexible prices) and efficient (optimal) output in the same way
 - inefficient shocks affect the wedge between natural and efficient output
As Benigno (2012) illustrates, shocks to productivity and government purchases are efficient shocks.
As Benigno (2012) illustrates, shocks to productivity and government purchases are efficient shocks.

- Efficient shocks do not create an output-inflation trade-off for monetary policy.

In effect, optimal policy makes price rigidity irrelevant.

The NK notion of stabilization policy is quite different from the traditional Keynesian view.
As Benigno (2012) illustrates, shocks to productivity and government purchases are efficient shocks:

- Efficient shocks do not create an output-inflation trade-off for monetary policy.
- In a model driven by such shocks, optimal policy stabilizes the price level.
As Benigno (2012) illustrates, shocks to productivity and government purchases are efficient shocks:

- Efficient shocks do not create an output-inflation trade-off for monetary policy.
- In a model driven by such shocks, optimal policy stabilizes the price level.
- And full price stabilization closes the output gap as well.
Efficient Shocks

- As Benigno (2012) illustrates, shocks to productivity and government purchases are efficient shocks.
 - Efficient shocks do not create an output-inflation trade-off for monetary policy.
 - In a model driven by such shocks, optimal policy stabilizes the price level.
 - And full price stabilization closes the output gap as well.
 - Optimal policy cuts the interest rate in response to a transitory increase in productivity.
Efficient Shocks

- As Benigno (2012) illustrates, shocks to productivity and government purchases are efficient shocks.
 - Efficient shocks do not create an output-inflation trade-off for monetary policy.
 - In a model driven by such shocks, optimal policy stabilizes the price level.
 - And full price stabilization closes the output gap as well.
 - Optimal policy cuts the interest rate in response to a transitory increase in productivity.
 - Optimal policy raises the interest rate in response to a transitory increase in government purchases.

Optimal policy responses to efficient shocks bring output back to its natural level (the level that would prevail under flexible prices). In effect, optimal policy makes price rigidity irrelevant.

The NK notion of stabilization policy is quite different from the traditional Keynesian view.

As Benigno (2012) illustrates, shocks to productivity and government purchases are efficient shocks:

- Efficient shocks do not create an output-inflation trade-off for monetary policy.
- In a model driven by such shocks, optimal policy stabilizes the price level.
- And full price stabilization closes the output gap as well.
- Optimal policy cuts the interest rate in response to a transitory increase in productivity.
- Optimal policy raises the interest rate in response to a transitory increase in government purchases.

Optimal policy responses to efficient shocks bring output back to its natural level (the level that would prevail under flexible prices).
As Benigno (2012) illustrates, shocks to productivity and government purchases are efficient shocks. Efficient shocks do not create an output-inflation trade-off for monetary policy. In a model driven by such shocks, optimal policy stabilizes the price level, and full price stabilization closes the output gap as well. Optimal policy cuts the interest rate in response to a transitory increase in productivity, and optimal policy raises the interest rate in response to a transitory increase in government purchases.

Optimal policy responses to efficient shocks bring output back to its natural level (the level that would prevail under flexible prices). In effect, optimal policy makes price rigidity irrelevant.
As Benigno (2012) illustrates, shocks to productivity and government purchases are efficient shocks. Efficient shocks do not create an output-inflation trade-off for monetary policy. In a model driven by such shocks, optimal policy stabilizes the price level and full price stabilization closes the output gap as well. Optimal policy cuts the interest rate in response to a transitory increase in productivity, and optimal policy raises the interest rate in response to a transitory increase in government purchases.

Optimal policy responses to efficient shocks bring output back to its natural level (the level that would prevail under flexible prices). In effect, optimal policy makes price rigidity irrelevant. The NK notion of stabilization policy is quite different from the traditional Keynesian view.
Inefficient shocks [the shocks to monopoly markups and distortionary taxes in Benigno (2012)] cause an output-inflation trade-off.
Inefficent shocks [the shocks to monopoly markups and distortionary taxes in Benigno (2012)] cause an output-inflation trade-off.

The optimal policy response to a shock causing stagflation is contractionary under the calibration discussed in Benigno (2012).
Inefficient shocks [the shocks to monopoly markups and distortionary taxes in Benigno (2012)] cause an output-inflation trade-off.

The optimal policy response to a shock causing stagflation is contractionary under the calibration discussed in Benigno (2012).

- but most researchers don’t emphasize this implication (based on parameter values) as a policy prescription (e.g., in response to oil shocks).
Inefficient shocks [the shocks to monopoly markups and distortionary taxes in Benigno (2012)] cause an output-inflation trade-off.

The optimal policy response to a shock causing stagflation is contractionary under the calibration discussed in Benigno (2012).

- but most researchers don’t emphasize this implication (based on parameter values) as a policy prescription (e.g., in response to oil shocks).

Variations on the basic NK model (e.g., incorporating nominal wage rigidity) also change the implication of strict price stabilization.
Inefficient shocks [the shocks to monopoly markups and distortionary taxes in Benigno (2012)] cause an output-inflation trade-off.

The optimal policy response to a shock causing stagflation is contractionary under the calibration discussed in Benigno (2012).

- but most researchers don’t emphasize this implication (based on parameter values) as a policy prescription (e.g., in response to oil shocks).

Variations on the basic NK model (e.g., incorporating nominal wage rigidity) also change the implication of strict price stabilization.

But departures from price stability, if any, are typically small in calibrated NK models.
The optimal policy maximizing household utility can be approximated by minimization of a familiar loss function involving inflation and the output gap.

In Benigno’s (2012) model, the quadratic approximation to welfare (household utility) is

\[
\frac{1}{2} \left(y - y^e\right)^2 + \theta^2 \kappa \left(p - p^e\right)^2
\]

where \(\theta\) is an elasticity parameter and \(\kappa\) is the slope of the Phillips curve.

More general NK models also imply similar loss functions involving parameters that we can estimate or calibrate.
The optimal policy maximizing household utility can be approximated by minimization of a familiar loss function involving inflation and the output gap.

In Benigno’s (2012) model, the quadratic approximation to welfare (household utility) is

\[
\frac{1}{2} (y - y_e)^2 + \frac{\theta}{2\kappa} (p - p^e)^2
\]

where \(\theta\) is an elasticity parameter and \(\kappa\) is the slope of the Phillips curve.
The optimal policy maximizing household utility can be approximated by minimization of a familiar loss function involving inflation and the output gap.

In Benigno’s (2012) model, the quadratic approximation to welfare (household utility) is

$$\frac{1}{2} (y - y_e)^2 + \frac{\theta}{2\kappa} (p - p^e)^2$$

where θ is an elasticity parameter and κ is the slope of the Phillips curve.

More general NK models also imply similar loss functions involving parameters that we can estimate or calibrate.
Minimization of the loss function leads to an optimal targeting rule that relates the output gap to inflation.
Minimization of the loss function leads to an optimal **targeting rule** that relates the output gap to inflation.

The optimal targeting rule in Benigno (2012) is

\[(y - y_e) + \frac{\theta}{\kappa} (p - p^e) = 0\]

Compared to an "instrument" rule (like the Taylor Rule) for setting the interest rate, an optimal targeting rule has the advantage of being invariant to the properties of shocks.
Minimization of the loss function leads to an optimal targeting rule that relates the output gap to inflation.

The optimal targeting rule in Benigno (2012) is

\[(y - y_e) + \frac{\theta}{\kappa} (p - p^e) = 0\]

Compared to an "instrument" rule (like the Taylor Rule) for setting the interest rate, an optimal targeting rule has the advantage of being invariant to the properties of shocks.
Minimization of the loss function leads to an optimal targeting rule that relates the output gap to inflation.

The optimal targeting rule in Benigno (2012) is

\[(y - y_e) + \frac{\theta}{\kappa} (p - p^e) = 0\]

Compared to an "instrument" rule (like the Taylor Rule) for setting the interest rate, an optimal targeting rule has the advantage of being invariant to the properties of shocks.

The optimal targeting rule is often presented as a prescription for "flexible inflation targeting"
The NK emphasis on price stability is in contrast to implications of Ramsey policy, maximizing household utility, in models with flexible prices and distortionary taxation; the latter typically make a case for the Friedman Rule (setting the nominal interest rate equal to zero) and its deflationary implication in inflation volatility and tax smoothing. Chari, Christiano, and Kehoe (1991) make these points using a model with cash and credit goods; they find the Friedman Rule is optimal, the optimal tax rate on labor income does not fluctuate much over time and in response to shocks (i.e., the model makes a case for tax smoothing), and the calibrated model implies very high inflation volatility (20% p.a.) under optimal policy.
The NK emphasis on price stability is in contrast to implications of Ramsey policy, maximizing household utility, in models with flexible prices and distortionary taxation; the latter typically make a case for

- the Friedman Rule (setting the nominal interest rate equal to zero) and its deflationary implication
The NK emphasis on price stability is in contrast to implications of Ramsey policy, maximizing household utility, in models with flexible prices and distortionary taxation; the latter typically make a case for
- the Friedman Rule (setting the nominal interest rate equal to zero) and its deflationary implication
- inflation volatility and tax smoothing
The NK emphasis on price stability is in contrast to implications of Ramsey policy, maximizing household utility, in models with flexible prices and distortionary taxation; the latter typically make a case for
- the Friedman Rule (setting the nominal interest rate equal to zero) and its deflationary implication
- inflation volatility and tax smoothing

Chari, Christiano, and Kehoe (1991) make these points using a model with cash and credit goods; they find...
The NK emphasis on price stability is in contrast to implications of Ramsey policy, maximizing household utility, in models with flexible prices and distortionary taxation; the latter typically make a case for

- the Friedman Rule (setting the nominal interest rate equal to zero) and its deflationary implication
- inflation volatility and tax smoothing

Chari, Christiano, and Kehoe (1991) make these points using a model with cash and credit goods; they find

- the Friedman Rule is optimal
The NK emphasis on price stability is in contrast to implications of Ramsey policy, maximizing household utility, in models with flexible prices and distortionary taxation; the latter typically make a case for

- the Friedman Rule (setting the nominal interest rate equal to zero) and its deflationary implication
- inflation volatility and tax smoothing

Chari, Christiano, and Kehoe (1991) make these points using a model with cash and credit goods; they find

- the Friedman Rule is optimal
- the optimal tax rate on labor income does not fluctuate much over time and in response to shocks (i.e., the model makes a case for tax smoothing)
The NK emphasis on price stability is in contrast to implications of Ramsey policy, maximizing household utility, in models with flexible prices and distortionary taxation; the latter typically make a case for

- the Friedman Rule (setting the nominal interest rate equal to zero) and its deflationary implication
- inflation volatility and tax smoothing

Chari, Christiano, and Kehoe (1991) make these points using a model with cash and credit goods; they find

- the Friedman Rule is optimal
- the optimal tax rate on labor income does not fluctuate much over time and in response to shocks (i.e., the model makes a case for tax smoothing)
- the calibrated model implies very high inflation volatility (20% p.a.) under optimal policy
In contrast to arguments going back to Phelps (1973), most models of money demand (with plausible restrictions) imply that the Friedman Rule is optimal in a setting with flexible prices.
Understanding the Models

- In contrast to arguments going back to Phelps (1973), most models of money demand (with plausible restrictions) imply that the Friedman Rule is optimal in a setting with flexible prices.
 - Optimal policy does not raise seigniorage revenues in the long run (after an initial phase).
In contrast to arguments going back to Phelps (1973), most models of money demand (with plausible restrictions) imply that the Friedman Rule is optimal in a setting with flexible prices:

- optimal policy does not raise seigniorage revenues in the long run (after an initial phase)
- in the model with cash and credit goods, for example, a positive interest rate would distort the relative consumption of the two goods
In contrast to arguments going back to Phelps (1973), most models of money demand (with plausible restrictions) imply that the Friedman Rule is optimal in a setting with flexible prices:

- Optimal policy does not raise seigniorage revenues in the long run (after an initial phase).
- In the model with cash and credit goods, for example, a positive interest rate would distort the relative consumption of the two goods.

Despite its implication of expected deflation, however, the Friedman Rule does not preclude inflation volatility.
In contrast to arguments going back to Phelps (1973), most models of money demand (with plausible restrictions) imply that the Friedman Rule is optimal in a setting with flexible prices.

- Optimal policy does not raise seigniorage revenues in the long run (after an initial phase).
- In the model with cash and credit goods, for example, a positive interest rate would distort the relative consumption of the two goods.

Despite its implication of expected deflation, however, the Friedman Rule does not preclude inflation volatility.

In contrast to arguments going back to Phelps (1973), most models of money demand (with plausible restrictions) imply that the Friedman Rule is optimal in a setting with flexible prices:

- optimal policy does not raise seigniorage revenues in the long run (after an initial phase);
- in the model with cash and credit goods, for example, a positive interest rate would distort the relative consumption of the two goods.

Despite its implication of expected deflation, however, the Friedman Rule does not preclude inflation volatility:

- unexpected inflation serves as a lump-sum tax in Chari, Christiano, and Kehoe (1991);
- it makes the real return on nominal government bonds state contingent, and this saves the Ramsey planner the welfare cost of varying distortionary taxes.
· These implications (average deflation and high inflation volatility) of the public-finance literature are in sharp contrast to the policy prescriptions of NK models.
These implications (average deflation and high inflation volatility) of the public-finance literature are in sharp contrast to the policy prescriptions of NK models. Transactions frictions and price rigidity are opposing forces in shaping optimal policy.
These implications (average deflation and high inflation volatility) of the public-finance literature are in sharp contrast to the policy prescriptions of NK models.

- Transactions frictions and price rigidity are opposing forces in shaping optimal policy.

To assess the quantitative importance of these opposing forces, a number of contributions [e.g., Schmitt-Grohe and Uribe (2004)] add price rigidity to the public-finance models.
These implications (average deflation and high inflation volatility) of the public-finance literature are in sharp contrast to the policy prescriptions of NK models.

- Transactions frictions and price rigidity are opposing forces in shaping optimal policy.

To assess the quantitative importance of these opposing forces, a number of contributions [e.g., Schmitt-Grohe and Uribe (2004)] add price rigidity to the public-finance models.

- And obtain numerical results suggesting that price rigidity is the stronger force.
These implications (average deflation and high inflation volatility) of the public-finance literature are in sharp contrast to the policy prescriptions of NK models. Transactions frictions and price rigidity are opposing forces in shaping optimal policy.

To assess the quantitative importance of these opposing forces, a number of contributions [e.g., Schmitt-Grohe and Uribe (2004)] add price rigidity to the public-finance models and obtain numerical results suggesting that price rigidity is the stronger force. CCD (2010) illustrate the results in the model with cash and credit goods.
Inflation and Interest Rates with a Wage Tax
(Profits Fully Taxed)
Inflation, Interest Rate, and Wage Tax Volatility
(Profits Fully Taxed)
Open Questions

- Academic research on optimal taxation continues to explore new issues
Open Questions

- Academic research on optimal taxation continues to explore new issues
 - Correia, Nicolini, and Teles (2008) argue that price rigidity is irrelevant in a model with consumption and wage taxes
Academic research on optimal taxation continues to explore new issues

- Correia, Nicolini, and Teles (2008) argue that price rigidity is irrelevant in a model with consumption \textbf{and} wage taxes
 - optimal policy exploits the wedge created by the consumption tax between consumer prices (which matter for the Friedman Rule) and producer prices (which matter for the NK models)
Open Questions

- Academic research on optimal taxation continues to explore new issues
 - Correia, Nicolini, and Teles (2008) argue that price rigidity is irrelevant in a model with consumption \textbf{and} wage taxes
 - optimal policy exploits the wedge created by the consumption tax between consumer prices (which matter for the Friedman Rule) and producer prices (which matter for the NK models)
 - but CCD (2010) highlight some implausible implications
Open Questions

- Academic research on optimal taxation continues to explore new issues.
 - Correia, Nicolini, and Teles (2008) argue that price rigidity is irrelevant in a model with consumption and wage taxes.
 - Optimal policy exploits the wedge created by the consumption tax between consumer prices (which matter for the Friedman Rule) and producer prices (which matter for the NK models).
 - Correia, Farhi, Nicolini, and Teles (2011) study optimal variations in the consumption tax when monetary policy is constrained by the zero-bound on the nominal interest rate.

Open Questions

- Academic research on optimal taxation continues to explore new issues
 - Correia, Nicolini, and Teles (2008) argue that price rigidity is irrelevant in a model with consumption and wage taxes
 - optimal policy exploits the wedge created by the consumption tax between consumer prices (which matter for the Friedman Rule) and producer prices (which matter for the NK models)
 - but CCD (2010) highlight some implausible implications
 - Correia, Farhi, Nicolini, and Teles (2011) study optimal variations in the consumption tax when monetary policy is constrained by the zero-bound on the nominal interest rate
 - Angeletos, Collard, Dellas, and Diba (2012) consider a model in which government bonds serve as collateral and argue that there is an optimal liquidity provision aspect missing from the standard Ramsey model
The basic NK model abstracts from money and banking!
The basic NK model abstracts from money and banking!

A rapidly growing literature adds banks to the NK model to address issues raised by the recent financial crisis.
The basic NK model abstracts from money and banking!

A rapidly growing literature adds banks to the NK model to address issues raised by the recent financial crisis

- the results to date probably have not provided concrete advice for central banks
The basic NK model abstracts from money and banking!

A rapidly growing literature adds banks to the NK model to address issues raised by the recent financial crisis:

- the results to date probably have not provided concrete advice for central banks
- most of the progress has been in developing models that reflect the concerns and views of central banks
The basic NK model abstracts from money and banking!

A rapidly growing literature adds banks to the NK model to address issues raised by the recent financial crisis:

- the results to date probably have not provided concrete advice for central banks
- most of the progress has been in developing models that reflect the concerns and views of central banks

Curdia and Woodford (2011) discuss and cite their work on a model with lenders and borrowers and costly financial intermediation.
The basic NK model abstracts from money and banking!

A rapidly growing literature adds banks to the NK model to address issues raised by the recent financial crisis

- the results to date probably have not provided concrete advice for central banks
- most of the progress has been in developing models that reflect the concerns and views of central banks

Curdia and Woodford (2011) discuss and cite their work on a model with lenders and borrowers and costly financial intermediation

- unconventional monetary policy (direct central bank lending) can be a component of optimal policy when the costs of private intermediation are sufficiently high
There are three dimensions to optimal policy in the Curdia-Woodford model:

1. Optimal interest payment on bank reserves
2. Optimal interest-rate policy and targeting rule
3. Optimal variation in the central bank's balance sheet (unconventional policy)
Optimal Policy in 3D

There are three dimensions to optimal policy in the Curdia-Woodford model:

- **optimal interest payment on bank reserves**
 - Optimal policy pays interest on bank reserves essentially (i.e., setting aside some real-world frictions that are not present in the model) at the same rate as its target for the policy rate. This is a substitute for the deflationary path implied by the Friedman Rule and serves the same purpose.
 - Optimal inflation is zero in the steady-state equilibrium.
There are three dimensions to optimal policy in the Curdia-Woodford model:

1. Optimal interest payment on bank reserves
2. Optimal interest-rate policy and targeting rule
3. Optimal variation in the central bank’s balance sheet (unconventional policy)

Optimal policy pays interest on bank reserves essentially (i.e., setting aside some real-world frictions that are not present in the model) at the same rate as its target for the policy rate. This is a substitute for the deflationary path implied by the Friedman Rule and serves the same purpose. Optimal inflation is zero in the steady-state equilibrium.
There are three dimensions to optimal policy in the Curdia-Woodford model:

1. Optimal interest payment on bank reserves
2. Optimal interest-rate policy and targeting rule
3. Optimal variation in the central bank’s balance sheet (unconventional policy)
Optimal Policy in 3D

- There are three dimensions to optimal policy in the Curdia-Woodford model:
 1. Optimal interest payment on bank reserves
 2. Optimal interest-rate policy and targeting rule
 3. Optimal variation in the central bank’s balance sheet (unconventional policy)

- Optimal policy pays interest on bank reserves essentially (i.e., setting aside some real-world frictions that are not present in the model) at the same rate as its target for the policy rate.
There are three dimensions to optimal policy in the Curdia-Woodford model:

1. Optimal interest payment on bank reserves
2. Optimal interest-rate policy and targeting rule
3. Optimal variation in the central bank’s balance sheet (unconventional policy)

Optimal policy pays interest on bank reserves essentially (i.e., setting aside some real-world frictions that are not present in the model) at the same rate as its target for the policy rate:

- This is a substitute for the deflationary path implied by the Friedman Rule and serves the same purpose.
Optimal Policy in 3D

- There are three dimensions to optimal policy in the Curdia-Woodford model:
 1. optimal interest payment on bank reserves
 2. optimal interest-rate policy and targeting rule
 3. optimal variation in the central bank’s balance sheet (unconventional policy)

- Optimal policy pays interest on bank reserves essentially (i.e., setting aside some real-world frictions that are not present in the model) at the same rate as its target for the policy rate:
 - this is a substitute for the deflationary path implied by the Friedman Rule and serves the same purpose
 - optimal inflation is zero in the steady-state equilibrium
Optimal policy satisfies the NK targeting rule (as we saw in the basic NK model) as long as it can adjust the policy rate to do so.
Conventional and Unconventional Policies

- Optimal policy satisfies the NK targeting rule (as we saw in the basic NK model) as long as it can adjust the policy rate to do so.

- If the policy rate is at the zero bound, the targeting rule and its implied price path remain a policy commitment.
Conventional and Unconventional Policies

- Optimal policy satisfies the NK targeting rule (as we saw in the basic NK model) as long as it can adjust the policy rate to do so.
- If the policy rate is at the zero bound, the targeting rule and its implied price path remain a policy commitment.
 - For example, in the aftermath of a deflationary episode, optimal policy commits to enough inflation to return the price level to the target path.
- There is no role for pure quantitative easing, as long as the commitment to the targeting rule is credible.
- There is, however, an aspect of credit easing: the central bank makes direct loans to the borrowers in the model when the costs of private intermediation are sufficient.
- This unconventional dimension of policy is particularly important when the policy rate is at the zero bound.
Optimal policy satisfies the NK targeting rule (as we saw in the basic NK model) as long as it can adjust the policy rate to do so.

If the policy rate is at the zero bound, the targeting rule and its implied price path remain a policy commitment.

- For example, in the aftermath of a deflationary episode, optimal policy commits to enough inflation to return the price level to the target path.

There is no role for pure quantitative easing, as long as the commitment to the targeting rule is credible.
Optimal policy satisfies the NK targeting rule (as we saw in the basic NK model) as long as it can adjust the policy rate to do so.

If the policy rate is at the zero bound, the targeting rule and its implied price path remain a policy commitment.

- For example, in the aftermath of a deflationary episode, optimal policy commits to enough inflation to return the price level to the target path.

There is no role for pure quantitative easing, as long as the commitment to the targeting rule is credible.

There is, however, an aspect of credit easing: the central bank makes direct loans to the borrowers in the model when the costs of private intermediation are sufficiently high.
Conventional and Unconventional Policies

- Optimal policy satisfies the NK targeting rule (as we saw in the basic NK model) as long as it can adjust the policy rate to do so.

- If the policy rate is at the zero bound, the targeting rule and its implied price path remain a policy commitment:
 - For example, in the aftermath of a deflationary episode, optimal policy commits to enough inflation to return the price level to the target path.

- There is no role for pure quantitative easing, as long as the commitment to the targeting rule is credible.

- There is, however, an aspect of credit easing: the central bank makes direct loans to the borrowers in the model when the costs of private intermediation are sufficiently high:
 - This unconventional dimension of policy is particularly important when the policy rate is at the zero bound.
Curdia and Woodford (2011) also cite their earlier paper on the welfare implications of alternative rules for setting the policy rate.
- Curdia and Woodford (2011) also cite their earlier paper on the welfare implications of alternative rules for setting the policy rate.
- Welfare losses from an ad-hoc simple rules are measured as foregone household utility relative to the utility attained under the optimal targeting rule.
Curdia and Woodford (2011) also cite their earlier paper on the welfare implications of alternative rules for setting the policy rate.

Welfare losses from an ad-hoc simple rules are measured as foregone household utility relative to the utility attained under the optimal targeting rule.

Simple rules that respond to the credit spread may perform better than the standard Taylor rule (with no spread adjustment) but the optimal spread adjustment depends on the source of movements in the credit spread, and it may not be large.
Curdia and Woodford (2011) also cite their earlier paper on the welfare implications of alternative rules for setting the policy rate. Welfare losses from an ad-hoc simple rules are measured as foregone household utility relative to the utility attained under the optimal targeting rule. Simple rules that respond to the credit spread may perform better than the standard Taylor rule (with no spread adjustment) but the optimal spread adjustment depends on the source of movements in the credit spread, and it may not be large. Simple rules that respond to the volume of credit have the same problem and actually seem inferior to rules with a spread adjustment.