Monetary and Fiscal Policies: The Nominal Anchor and Seigniorage

Behzad Diba

Georgetown University

May 2013
Classical Monetary Theory was about how monetary conditions pin down the price level and other nominal variables.
Classical Monetary Theory was about how monetary conditions pin down the price level and other nominal variables.

The Classical Dichotomy (long-run neutrality of money) implied that the long-run equilibrium values of real variables (e.g., employment, output, real interest rates) don’t depend on monetary conditions.
Classical Monetary Theory was about how monetary conditions pin down the price level and other nominal variables.

- The Classical Dichotomy (long-run neutrality of money) implied that the long-run equilibrium values of real variables (e.g., employment, output, real interest rates) don’t depend on monetary conditions.
- The Quantity Theory of Money \((MV = PY)\) was typically the link between the money supply and the price level.
Classical Monetary Theory was about how monetary conditions pin down the price level and other nominal variables.

- The Classical Dichotomy (long-run neutrality of money) implied that the long-run equilibrium values of real variables (e.g., employment, output, real interest rates) don’t depend on monetary conditions.
- The Quantity Theory of Money ($MV = PY$) was typically the link between the money supply and the price level.
- But some classical (neoclassical) economists discussed price-level determination when the central bank sets the nominal interest rate.
Classical Monetary Theory was about how monetary conditions pin down the price level and other nominal variables. The Classical Dichotomy (long-run neutrality of money) implied that the long-run equilibrium values of real variables (e.g., employment, output, real interest rates) don’t depend on monetary conditions. The Quantity Theory of Money \((M \cdot V = P \cdot Y)\) was typically the link between the money supply and the price level. But some classical (neoclassical) economists discussed price-level determination when the central bank sets the nominal interest rate.

We may (for questions addressed in these notes) think of Classical / Neoclassical models of price-level determination in the long-run (with no nominal rigidity) as theories of how nominal GDP is pinned down.
Classical Monetary Theory was about how monetary conditions pin down the price level and other nominal variables.

- The Classical Dichotomy (long-run neutrality of money) implied that the long-run equilibrium values of real variables (e.g., employment, output, real interest rates) don’t depend on monetary conditions.
- The Quantity Theory of Money \(MV = PY \) was typically the link between the money supply and the price level.
- But some classical (neoclassical) economists discussed price-level determination when the central bank sets the nominal interest rate.

We may (for questions addressed in these notes) think of Classical / Neoclassical models of price-level determination in the long-run (with no nominal rigidity) as theories of how nominal GDP is pinned down.

- Nominal rigidities may link changes in nominal and real GDP in the short run.
Classical Monetary Theory was about how monetary conditions pin down the price level and other nominal variables.

The Classical Dichotomy (long-run neutrality of money) implied that the long-run equilibrium values of real variables (e.g., employment, output, real interest rates) don’t depend on monetary conditions.

The Quantity Theory of Money ($MV = PY$) was typically the link between the money supply and the price level.

But some classical (neoclassical) economists discussed price-level determination when the central bank sets the nominal interest rate.

We may (for questions addressed in these notes) think of Classical / Neoclassical models of price-level determination in the long-run (with no nominal rigidity) as theories of how nominal GDP is pinned down.

Nominal rigidities may link changes in nominal and real GDP in the short run.

But this does not interact in a fundamental way with our discussion of the nominal anchor.
Money Stock as Nominal Anchor

- The simplest modern analogue of the Quantity Theory of Money is a Cash-in-Advance (CIA) model in which households get an endowment (Y_t) of a perishable good.

In equilibrium, the price level depends on the current period's money supply and endowment. More general models of money demand (like the CIA model with production, or models with transactions costs) capture the effect of the nominal interest rate on demand for real money balances. According to these models, expected money growth and inflation affect the current price level.
Money Stock as Nominal Anchor

- The simplest modern analogue of the Quantity Theory of Money is a Cash-in-Advance (CIA) model in which households get an endowment (Y_t) of a perishable good.
 - Households don’t like the "color" of their endowment and want to trade.
The simplest modern analogue of the Quantity Theory of Money is a Cash-in-Advance (CIA) model in which households get an endowment \(Y_t \) of a perishable good

- households don’t like the "color" of their endowment and want to trade
- they first trade money and bonds in a financial exchange, and then buy goods from each other with cash
The simplest modern analogue of the Quantity Theory of Money is a Cash-in-Advance (CIA) model in which households get an endowment \(Y_t \) of a perishable good.

- Households don’t like the "color" of their endowment and want to trade.
- They first trade money and bonds in a financial exchange, and then buy goods from each other with cash.
- In the goods exchange, household \(h \) faces the CIA constraint

\[
P_t C_t^h \leq M_t^h \quad (1)
\]
Money Stock as Nominal Anchor

- The simplest modern analogue of the Quantity Theory of Money is a Cash-in-Advance (CIA) model in which households get an endowment \(Y_t \) of a perishable good
 - households don’t like the "color" of their endowment and want to trade
 - they first trade money and bonds in a financial exchange, and then buy goods from each other with cash
 - in the goods exchange, household \(h \) faces the CIA constraint

\[
P_t C_t^h \leq M_t^h \quad (1)
\]

- In equilibrium, the price level depends on the current period’s money supply and endowment
The simplest modern analogue of the Quantity Theory of Money is a Cash-in-Advance (CIA) model in which households get an endowment \((Y_t)\) of a perishable good

- households don’t like the "color" of their endowment and want to trade
- they first trade money and bonds in a financial exchange, and then buy goods from each other with cash
- in the goods exchange, household \(h\) faces the CIA constraint

\[
P_t C_t^h \leq M_t^h \tag{1}
\]

In equilibrium, the price level depends on the current period’s money supply and endowment.

More general models of money demand (like the CIA model with production, or models with transactions costs) capture the effect of the nominal interest rate on demand for real money balances.
The simplest modern analogue of the Quantity Theory of Money is a Cash-in-Advance (CIA) model in which households get an endowment \((Y_t)\) of a perishable good:

- Households don’t like the "color" of their endowment and want to trade.
- They first trade money and bonds in a financial exchange, and then buy goods from each other with cash.
- In the goods exchange, household \(h\) faces the CIA constraint

\[P_t C_t^h \leq M_t^h \] (1)

In equilibrium, the price level depends on the current period’s money supply and endowment.

More general models of money demand (like the CIA model with production, or models with transactions costs) capture the effect of the nominal interest rate on demand for real money balances:

- According to these models, expected money growth and inflation affect the current price level.
A simple—and, for our purposes, harmless—way to capture the role of expectations is the ad-hoc specification

\[m_t - p_t = y_t - \eta i_t, \quad \eta > 0, \]

as the equilibrium condition in the market for money.
A simple—and, for our purposes, harmless—way to capture the role of expectations is the ad-hoc specification

\[m_t - p_t = y_t - \eta i_t , \quad \eta > 0 , \]

as the equilibrium condition in the market for money.

The left-hand side is the (logarithm of the) real money stock.

Expected inflation \((E_t \pi_t + 1)\) raises the nominal interest rate \(i_t\) via the Fisher equation,

\[i_t = r_t + E_t \pi_t + 1 , \]

where \(r_t\) is the expected real interest rate; this reduces current demand for real money balances, which raises \(p_t\).
A simple—and, for our purposes, harmless—way to capture the role of expectations is the ad-hoc specification

\[m_t - p_t = y_t - \eta i_t, \quad \eta > 0, \]

as the equilibrium condition in the market for money

- The left-hand side is the (logarithm of the) real money stock
- The right-hand side is the (logarithm of) demand for real money balances

Expected inflation (\(E_t \pi_{t+1} \)) raises the nominal interest rate (\(i_t \)) via the Fisher equation,

\[i_t = r_t + E_t \pi_{t+1}, \]

where \(r_t \) is the expected real interest rate; this reduces current demand for real money balances.
A simple—and, for our purposes, harmless—way to capture the role of expectations is the ad-hoc specification

\[m_t - p_t = y_t - \eta i_t , \quad \eta > 0 , \]

as the equilibrium condition in the market for money

- The left-hand side is the (logarithm of the) real money stock
- The right-hand side is the (logarithm of) demand for real money balances

Expected inflation \((E_t \pi_{t+1}) \) raises the nominal interest rate \((i_t) \) via the Fisher equation,

\[i_t = r_t + E_t \pi_{t+1} , \]

(where \(r_t \) is the expected real interest rate); this reduces current demand for real money balances, which raises \(p_t \)
A simple— and, for our purposes, harmless— way to capture the role of expectations is the ad-hoc specification

\[m_t - p_t = y_t - \eta i_t , \quad \eta > 0 , \]

as the equilibrium condition in the market for money

- The left-hand side is the (logarithm of the) real money stock
- The right-hand side is the (logarithm of) demand for real money balances

Expected inflation \((E_t \pi_{t+1}) \) raises the nominal interest rate \((i_t) \) via the Fisher equation,

\[i_t = r_t + E_t \pi_{t+1} , \]

(where \(r_t \) is the expected real interest rate); this reduces current demand for real money balances, which raises \(p_t \)

For simplicity, we focus on a long-run equilibrium in which monetary policy does not affect real variables— so, \(r_t \) is exogenous
Nominal Indeterminacy

- Theoretical research – summarized and cited in Canzoneri, Cumby and Diba [CCD (2010)] – has demonstrated that the price level may not be uniquely determined under money supply targeting (in models that link money demand to the nominal interest rate).

\[m_t p_t = y_t \eta_i^t \]

Determines real money balances, and the Fisher equation pins down expected inflation; but the equilibrium price level and actual inflation are not determined (the model exhibits nominal indeterminacy).
Nominal Indeterminacy

- Theoretical research – summarized and cited in Canzoneri, Cumby and Diba [CCD (2010)] – has demonstrated that the price level may not be uniquely determined under money supply targeting (in models that link money demand to the nominal interest rate).
- But in policy-oriented research, we usually set this aside, focusing on the unique suitably *bounded* solution for the price level and inflation.
Nominal Indeterminacy

- Theoretical research – summarized and cited in Canzoneri, Cumby and Diba [CCD (2010)] – has demonstrated that the price level may not be uniquely determined under money supply targeting (in models that link money demand to the nominal interest rate).
- But in policy-oriented research, we usually set this aside, focusing on the unique suitably **bounded** solution for the price level and inflation.
- The prospect of nominal indeterminacy that does play a role in policy-oriented discussions pertains to interest-rate rules.
Theoretical research – summarized and cited in Canzoneri, Cumby and Diba [CCD (2010)] – has demonstrated that the price level may not be uniquely determined under money supply targeting (in models that link money demand to the nominal interest rate).

But in policy-oriented research, we usually set this aside, focusing on the unique suitably bounded solution for the price level and inflation.

The prospect of nominal indeterminacy that does play a role in policy-oriented discussions pertains to interest-rate rules:

- a policy that sets an exogenous path for the nominal interest rate (e.g., pegs the nominal rate) does not pin down the price level...
Nominal Indeterminacy

- Theoretical research – summarized and cited in Canzoneri, Cumby and Diba [CCD (2010)] – has demonstrated that the price level may not be uniquely determined under money supply targeting (in models that link money demand to the nominal interest rate).
- But in policy-oriented research, we usually set this aside, focusing on the unique suitably bounded solution for the price level and inflation.
- The prospect of nominal indeterminacy that does play a role in policy-oriented discussions pertains to interest-rate rules:
 - a policy that sets an exogenous path for the nominal interest rate (e.g., pegs the nominal rate) does not pin down the price level;
 - for example, given i_t,
 \[m_t - p_t = y_t - \eta i_t \]
 determines real money balances, and the Fisher equation pins down expected inflation; but the equilibrium price level and actual inflation are not determined (the model exhibits nominal indeterminacy).
To get nominal determinacy in our policy-oriented models, we often work with interest-rate rules that react to inflation.
To get nominal determinacy in our policy-oriented models, we often work with interest-rate rules that react to inflation. Again, we confine our analysis to suitably bounded equilibria (abstracting, in particular, from the theoretical possibility of explosive paths for inflation).
To get nominal determinacy in our policy-oriented models, we often work with interest-rate rules that react to inflation.

- again, we confine our analysis to suitably bounded equilibria (abstracting, in particular, from the theoretical possibility of explosive paths for inflation)
- an interest-rate rule that obeys the Taylor Principle (reacts to inflation with a coefficient larger than unity) implies a unique bounded equilibrium, in our benchmark model
To get nominal determinacy in our policy-oriented models, we often work with interest-rate rules that react to inflation.

Again, we confine our analysis to suitably bounded equilibria (abstracting, in particular, from the theoretical possibility of explosive paths for inflation).

An interest-rate rule that obeys the Taylor Principle (reacts to inflation with a coefficient larger than unity) implies a unique bounded equilibrium, in our benchmark model.

More generally, the central bank’s feedback rule may also react to variables other than inflation, but the critical value of the reaction to inflation (satisfying the Taylor Principle) is very close to unity in most models.
To get nominal determinacy in our policy-oriented models, we often work with interest-rate rules that react to inflation.

Again, we confine our analysis to suitably bounded equilibria (abstracting, in particular, from the theoretical possibility of explosive paths for inflation).

An interest-rate rule that obeys the Taylor Principle (reacts to inflation with a coefficient larger than unity) implies a unique bounded equilibrium, in our benchmark model.

More generally, the central bank’s feedback rule may also react to variables other than inflation, but the critical value of the reaction to inflation (satisfying the Taylor Principle) is very close to unity in most models.

There is a general perception in this literature that avoiding nominal indeterminacy should be an important part of the central bank’s mandate.
The Taylor Principle

An interest-rate rule obeys the Taylor Principle if it responds to inflation with a coefficient greater than unity.
The Taylor Principle

- An interest-rate rule obeys the Taylor Principle if it responds to inflation with a coefficient greater than unity.
 - This can serve to stabilize aggregate demand in models with nominal rigidity.
The Taylor Principle

- An interest-rate rule obeys the Taylor Principle if it responds to inflation with a coefficient greater than unity
 - this can serve to stabilize aggregate demand in models with nominal rigidity
 - it makes inflation dynamics explosive and implies a unique bounded solution for the inflation rate
An interest-rate rule obeys the Taylor Principle if it responds to inflation with a coefficient greater than unity:

- this can serve to stabilize aggregate demand in models with nominal rigidity.
- it makes inflation dynamics explosive and implies a unique bounded solution for the inflation rate.

For concreteness, suppose the central bank has a zero-inflation target in the long run and sets

\[i_t = r + \phi \pi_t \]

where \(r \) is the real interest rate in the steady-state equilibrium.
An interest-rate rule obeys the Taylor Principle if it responds to inflation with a coefficient greater than unity:

- this can serve to stabilize aggregate demand in models with nominal rigidity
- it makes inflation dynamics explosive and implies a unique bounded solution for the inflation rate

For concreteness, suppose the central bank has a zero-inflation target in the long run and sets

\[i_t = r + \phi \pi_t \]

where \(r \) is the real interest rate in the steady-state equilibrium.

Using the Fisher equation, the dynamics of inflation are governed by

\[E_t \pi_{t+1} = \phi \pi_t - (r_t - r) \]

which generates explosive dynamics if \(\phi > 1 \)
The Bounded Solution

- Assuming $\phi_{\pi} > 1$, and iterating

$$\pi_t = \phi_{\pi}^{-1} [E_t \pi_{t+1} + r_t - r]$$

forward, we get the unique bounded solution

$$\pi_t = \lim_{n \to +\infty} \phi_{\pi}^{-n} E_t \pi_{t+n} + E_t \sum_{j=0}^{+\infty} \phi_{\pi}^{-j} (r_{t+j} - r) = E_t \sum_{j=0}^{+\infty} \phi_{\pi}^{-j} (r_{t+j} - r)$$
The Bounded Solution

- Assuming $\phi_\pi > 1$, and iterating

$$\pi_t = \phi_\pi^{-1} [E_t \pi_{t+1} + r_t - r]$$

forward, we get the unique bounded solution

$$\pi_t = \lim_{n \to +\infty} \phi_\pi^{-n} E_t \pi_{t+n} + E_t \sum_{j=0}^{+\infty} \phi_\pi^{-j} (r_{t+j} - r) = E_t \sum_{j=0}^{+\infty} \phi_\pi^{-j} (r_{t+j} - r)$$

- The same mechanical intuition applies to the standard New Keynesian model (and will play a role in our discussion later)
The Bounded Solution

- Assuming $\phi_\pi > 1$, and iterating

$$\pi_t = \phi_\pi^{-1} \left[E_t \pi_{t+1} + r_t - r \right]$$

forward, we get the unique bounded solution

$$\pi_t = \lim_{n \to +\infty} \phi_\pi^{-n} E_t \pi_{t+n} + E_t \sum_{j=0}^{+\infty} \phi_\pi^{-j} (r_{t+j} - r) = E_t \sum_{j=0}^{+\infty} \phi_\pi^{-j} (r_{t+j} - r)$$

- The same mechanical intuition applies to the standard New Keynesian model (and will play a role in our discussion later)

 - a monetary policy rule satisfying the Taylor Principle makes the relevant eigenvalue unstable
The Bounded Solution

- Assuming $\phi_\pi > 1$, and iterating

$$\pi_t = \phi_\pi^{-1} [E_t \pi_{t+1} + r_t - r]$$

forward, we get the unique bounded solution

$$\pi_t = \lim_{n \to +\infty} \phi_\pi^{-n} E_t \pi_{t+n} + E_t \sum_{j=0}^{+\infty} \phi_\pi^{-j} (r_{t+j} - r) = E_t \sum_{j=0}^{+\infty} \phi_\pi^{-j} (r_{t+j} - r)$$

- The same mechanical intuition applies to the standard New Keynesian model (and will play a role in our discussion later)
 - a monetary policy rule satisfying the Taylor Principle makes the relevant eigenvalue unstable
 - this makes the bounded solution unique
The Bounded Solution

- Assuming $\phi_\pi > 1$, and iterating

$$\pi_t = \phi_\pi^{-1} [E_t \pi_{t+1} + r_t - r]$$

forward, we get the unique bounded solution

$$\pi_t = \lim_{n \to +\infty} \phi_\pi^{-n} E_t \pi_{t+n} + E_t \sum_{j=0}^{+\infty} \phi_\pi^{-j} (r_{t+j} - r) = E_t \sum_{j=0}^{+\infty} \phi_\pi^{-j} (r_{t+j} - r)$$

- The same mechanical intuition applies to the standard New Keynesian model (and will play a role in our discussion later)
 - a monetary policy rule satisfying the Taylor Principle makes the relevant eigenvalue unstable
 - this makes the bounded solution unique
 - the bounded solution is forward looking
The Bounded Solution

- Assuming $\phi_\pi > 1$, and iterating

$$\pi_t = \phi_\pi^{-1} [E_t \pi_{t+1} + r_t - r]$$

forward, we get the unique bounded solution

$$\pi_t = \lim_{n \to +\infty} \phi_\pi^{-n} E_t \pi_{t+n} + E_t \sum_{j=0}^{+\infty} \phi_\pi^{-j} (r_{t+j} - r) = E_t \sum_{j=0}^{+\infty} \phi_\pi^{-j} (r_{t+j} - r)$$

- The same mechanical intuition applies to the standard New Keynesian model (and will play a role in our discussion later)
 - a monetary policy rule satisfying the Taylor Principle makes the relevant eigenvalue unstable
 - this makes the bounded solution unique
 - the bounded solution is forward looking
 - the effects of shocks in the distant future follow a geometric decay pattern
The dynamic equation for inflation has multiple bounded solutions if
\[0 \leq \phi_{\pi} < 1 \]
Departures from the Taylor Principle

- The dynamic equation for inflation has multiple bounded solutions if $0 \leq \phi_\pi < 1$
- An interest-rate rule that does not obey the Taylor Principle does not pin down actual inflation (and the price level)

What does this say about real-world episodes when monetary policy does not seem to satisfy the Taylor Principle?

- Pegged rates in the US before the Fed-Treasury Accord?
- Rates held essentially at zero in the aftermath of the financial crisis?
- Empirical estimates [cited in CCD (2010)] suggesting “passive” interest-rate rules (policies with $0 \leq \phi_\pi < 1$) in the 1960s and 1970s?

One prominent interpretation in the literature [discussed in CCD (2010)] invokes sunspot equilibria to explain such episodes. We will revisit these questions and alternative interpretations.
The dynamic equation for inflation has multiple bounded solutions if
\[0 \leq \phi_\pi < 1 \]
- an interest-rate rule that does not obey the Taylor Principle does not pin down actual inflation (and the price level)

What does this say about real-world episodes when monetary policy does not seem to satisfy the Taylor Principle?

pegged rates in the US before the Fed-Treasury Accord?
rates held essentially at zero in the aftermath of the financial crisis?
empirical estimates [cited in CCD (2010)] suggesting "passive" interest-rate rules (policies with \[0 \leq \phi_\pi < 1 \]) in the 1960s and 1970s?

One prominent interpretation in the literature [discussed in CCD (2010)] invokes sunspot equilibria to explain such episodes.

We will revisit these questions and alternative interpretations...
Departures from the Taylor Principle

- The dynamic equation for inflation has multiple bounded solutions if $0 \leq \phi_{\pi} < 1$
 - an interest-rate rule that does not obey the Taylor Principle does not pin down actual inflation (and the price level)
- What does this say about real-world episodes when monetary policy does not seem to satisfy the Taylor Principle?
 - pegged rates in the US before the Fed-Treasury Accord?
The dynamic equation for inflation has multiple bounded solutions if
\[0 \leq \phi_{\pi} < 1 \]

- an interest-rate rule that does not obey the Taylor Principle does not
 pin down actual inflation (and the price level)

What does this say about real-world episodes when monetary policy
does not seem to satisfy the Taylor Principle?

- pegged rates in the US before the Fed-Treasury Accord?
- rates held essentially at zero in the aftermath of the financial crisis?
Departures from the Taylor Principle

- The dynamic equation for inflation has multiple bounded solutions if \(0 \leq \phi_\pi < 1 \)
 - an interest-rate rule that does not obey the Taylor Principle does not pin down actual inflation (and the price level)

- What does this say about real-world episodes when monetary policy does not seem to satisfy the Taylor Principle?
 - pegged rates in the US before the Fed-Treasury Accord?
 - rates held essentially at zero in the aftermath of the financial crisis?
 - empirical estimates [cited in CCD (2010)] suggesting "passive" interest-rate rules (policies with \(0 \leq \phi_\pi < 1 \)) in the 1960s and 1970s?
Departures from the Taylor Principle

- The dynamic equation for inflation has multiple bounded solutions if $0 \leq \phi_{\pi} < 1$
 - an interest-rate rule that does not obey the Taylor Principle does not pin down actual inflation (and the price level)

- What does this say about real-world episodes when monetary policy does not seem to satisfy the Taylor Principle?
 - pegged rates in the US before the Fed-Treasury Accord?
 - rates held essentially at zero in the aftermath of the financial crisis?
 - empirical estimates [cited in CCD (2010)] suggesting "passive" interest-rate rules (policies with $0 \leq \phi_{\pi} < 1$) in the 1960s and 1970s?

- One prominent interpretation in the literature [discussed in CCD (2010)] invokes sunspot equilibria to explain such episodes
Departures from the Taylor Principle

- The dynamic equation for inflation has multiple bounded solutions if \(0 \leq \phi_\pi < 1 \)
 - an interest-rate rule that does not obey the Taylor Principle does not pin down actual inflation (and the price level)
- What does this say about real-world episodes when monetary policy does not seem to satisfy the Taylor Principle?
 - pegged rates in the US before the Fed-Treasury Accord?
 - rates held essentially at zero in the aftermath of the financial crisis?
 - empirical estimates [cited in CCD (2010)] suggesting "passive" interest-rate rules (policies with \(0 \leq \phi_\pi < 1 \)) in the 1960s and 1970s?
- One prominent interpretation in the literature [discussed in CCD (2010)] invokes sunspot equilibria to explain such episodes
- We will revisit these questions and alternative interpretations
Another topic we will revisit, using alternative models, has to do with the role of seigniorage in the present-value budget constraint (PVBC) of the public sector.
Seigniorage

- Another topic we will revisit, using alternative models, has to do with the role of seigniorage in the present-value budget constraint (PVBC) of the public sector.
- Sargent and Wallace (1981) highlighted a *coordination problem* between fiscal and monetary policies.

Institute: Monetary and Fiscal Policies: The Nominal Anchor and Seigniorage

May 2013 10 / 27
Another topic we will revisit, using alternative models, has to do with the role of seigniorage in the present-value budget constraint (PVBC) of the public sector.

Sargent and Wallace (1981) highlighted a coordination problem between fiscal and monetary policies.

The basic questions are about which policy is ultimately responsible for satisfying the public sector’s consolidated PVBC.
Another topic we will revisit, using alternative models, has to do with the role of seigniorage in the present-value budget constraint (PVBC) of the public sector. Sargent and Wallace (1981) highlighted a coordination problem between fiscal and monetary policies. The basic questions are about which policy is ultimately responsible for satisfying the public sector’s consolidated PVBC.

- Will the treasury deliver the requisite surpluses, given the path of inflation set by the central bank?
Another topic we will revisit, using alternative models, has to do with the role of seigniorage in the present-value budget constraint (PVBC) of the public sector.

Sargent and Wallace (1981) highlighted a **coordination problem** between fiscal and monetary policies.

The basic questions are about which policy is ultimately responsible for satisfying the public sector’s consolidated PVBC.

- Will the treasury deliver the requisite surpluses, given the path of inflation set by the central bank?
- Or, will the central bank eventually deliver the seigniorage revenues needed to make up for a shortfall of fiscal surpluses?
Another topic we will revisit, using alternative models, has to do with the role of seigniorage in the present-value budget constraint (PVBC) of the public sector.

Sargent and Wallace (1981) highlighted a coordination problem between fiscal and monetary policies.

The basic questions are about which policy is ultimately responsible for satisfying the public sector’s consolidated PVBC.

- Will the treasury deliver the requisite surpluses, given the path of inflation set by the central bank?
- Or, will the central bank eventually deliver the seigniorage revenues needed to make up for a shortfall of fiscal surpluses?

For now, following Sargent and Wallace, we assume that the government issues real (indexed) bonds to finance its deficit; we will see later how the results change in a model with nominal (domestic-currency) bonds.
A Simple Setup

The exposition is easier (and there is not much loss of substance) if we use the CIA model with a constant endowment y and constant government purchases G.

We get the PVBC $b_t = E_t \sum_{j=0}^{\infty} (1 + r)^j \tau_t + j + P_{t+j} + \frac{1}{P_{t+j}} y G$ where b_t is the predetermined stock of real bonds, and $\tau_t + j g$ is the sequence of real tax revenues.
The exposition is easier (and there is not much loss of substance) if we use the CIA model with a constant endowment y and constant government purchases G

in equilibrium, with $C_t = y - G$, consumption is constant; this pins down the real interest rate on public debt at a constant level r (equal to the households’ rate of time preference)
The exposition is easier (and there is not much loss of substance) if we use the CIA model with a constant endowment y and constant government purchases G

- in equilibrium, with $C_t = y - G$, consumption is constant; this pins down the real interest rate on public debt at a constant level r (equal to the households’ rate of time preference)
- extending the CIA constraint (1) to government purchases, we can write seigniorage revenues as

$$\frac{M_t - M_{t-1}}{P_t} = \left(\frac{P_t - P_{t-1}}{P_t} \right) y$$
A Simple Setup

- The exposition is easier (and there is not much loss of substance) if we use the CIA model with a constant endowment y and constant government purchases G
 - in equilibrium, with $C_t = y - G$, consumption is constant; this pins down the real interest rate on public debt at a constant level r (equal to the households’ rate of time preference)
 - extending the CIA constraint (1) to government purchases, we can write seigniorage revenues as
 \[\frac{M_t - M_{t-1}}{P_t} = \left(\frac{P_t - P_{t-1}}{P_t} \right) y \]
- We get the PVBC
 \[b_t = E_t \sum_{j=0}^{\infty} (1 + r)^{-j} \left\{ \tau_{t+j} + \left(\frac{P_{t+j} - P_{t+j-1}}{P_{t+j}} \right) y - G \right\} \]

where b_t is the predetermined stock of real bonds, and $\{\tau_{t+j}\}$ is the sequence of real tax revenues
Satisfying the PVBC

- Defining the inflation rate (just for present purposes) as
 \[\pi_t = \frac{P_t - P_{t-1}}{P_t}, \]
 the PVBC requires

 \[b_t = E_t \sum_{j=0}^{\infty} (1 + r)^{-j} S_{t+j} + y E_t \sum_{j=0}^{\infty} (1 + r)^{-j} \pi_{t+j} \]

 where \(S_t \equiv \tau_t - G \) is the primary surplus exclusive of seigniorage
Satisfying the PVBC

- Defining the inflation rate (just for present purposes) as

\[\pi_t = \frac{P_t - P_{t-1}}{P_t} \]

the PVBC requires

\[b_t = E_t \sum_{j=0}^{\infty} (1 + r)^{-j} S_{t+j} + \gamma E_t \sum_{j=0}^{\infty} (1 + r)^{-j} \pi_{t+j} \]

where \(S_t \equiv \tau_t - G \) is the primary surplus exclusive of seigniorage

- The expected present-value of primary surpluses inclusive of seigniorage must equal the outstanding public debt
Satisfying the PVBC

- Defining the inflation rate (just for present purposes) as
 \[\pi_t = \frac{P_t - P_{t-1}}{P_t} , \]
 the PVBC requires
 \[b_t = E_t \sum_{j=0}^{\infty} (1 + r)^{-j} S_{t+j} + yE_t \sum_{j=0}^{\infty} (1 + r)^{-j} \pi_{t+j} \]
 where \(S_t \equiv \tau_t - G \) is the primary surplus exclusive of seigniorage.
- The expected present-value of primary surpluses inclusive of seigniorage must equal the outstanding public debt.
- Sargent and Wallace highlight a policy coordination problem cast as a game over which authority (the treasury or the central bank) is ultimately responsible for satisfying the PVBC.
Suppose an independent central bank is the "leader" in the ensuing game and sets the present value of seigniorage revenues

\[K_{m,t} \equiv yE_t \sum_{j=0}^{\infty} (1 + r)^{-j} \pi_{t+j} \]
A "Leading" Central Bank

- Suppose an independent central bank is the "leader" in the ensuing game and sets the present value of seigniorage revenues

\[K_{m,t} \equiv y E_t \sum_{j=0}^{\infty} (1 + r)^{-j} \pi_{t+j} \]

- Then, the fiscal authority has to set the present value of its surpluses,

\[K_{f,t} \equiv E_t \sum_{j=0}^{\infty} (1 + r)^{-j} S_{t+j} , \]

...to satisfy

\[K_{f,t} = b_t - K_{m,t} \]
Alternatively, suppose an intransigent fiscal authority is the leader and sets the present value of its surpluses

\[K_{f,t} \equiv E_t \sum_{j=0}^{\infty} (1 + r)^{-j} S_{t+j} \]
Alternatively, suppose an intransigent fiscal authority is the leader and sets the present value of its surpluses

$$K_{f,t} \equiv E_t \sum_{j=0}^{\infty} (1 + r)^{-j} S_{t+j}$$

Then, the central bank has no choice and must deliver the present value of seigniorage revenues

$$K_{m,t} \equiv yE_t \sum_{j=0}^{\infty} (1 + r)^{-j} \pi_{t+j}$$

that satisfy the PVBC:

$$K_{m,t} = b_t - K_{f,t}$$
A Game of Chicken

- There is nothing in this setup to pin down which policy leads and which one follows.
A Game of Chicken

- There is nothing in this setup to pin down which policy leads and which one follows.
- The PVBC is viewed as a constraint that the two policies must jointly satisfy.
A Game of Chicken

- There is nothing in this setup to pin down which policy leads and which one follows.
- The PVBC is viewed as a constraint that the two policies must jointly satisfy.
- The monetarist view of price determination and inflation control is accurate only if the fiscal authority follows the central bank’s lead.
A Game of Chicken

- There is nothing in this setup to pin down which policy leads and which one follows.
- The PVBC is viewed as a constraint that the two policies must jointly satisfy.
- The monetarist view of price determination and inflation control is accurate only if the fiscal authority follows the central bank’s lead.
 - in this case, the central bank can set the path of the money supply, and the CIA constraint determines the path of the price level.
There is nothing in this setup to pin down which policy leads and which one follows.

The PVBC is viewed as a constraint that the two policies must jointly satisfy.

The monetarist view of price determination and inflation control is accurate only if the fiscal authority follows the central bank’s lead.

- in this case, the central bank can set the path of the money supply, and the CIA constraint determines the path of the price level.
- but this entails an assumption that fiscal policy will adjust surpluses to satisfy the PVBC.
A Game of Chicken

- There is nothing in this setup to pin down which policy leads and which one follows.
- The PVBC is viewed as a constraint that the two policies must jointly satisfy.
- The monetarist view of price determination and inflation control is accurate only if the fiscal authority follows the central bank’s lead.
 - In this case, the central bank can set the path of the money supply, and the CIA constraint determines the path of the price level.
 - But this entails an assumption that fiscal policy will adjust surpluses to satisfy the PVBC.
- Avoiding a solution with fiscal leadership has motivated arguments for fiscal constraints, like the ones in the Stability and Growth Pact.
The central bank’s ability to control inflation is limited in the case with fiscal leadership.
The central bank’s ability to control inflation is limited in the case with fiscal leadership.

Inflation can be stabilized at a level that delivers the necessary present value of surpluses.
The central bank’s ability to control inflation is limited in the case with fiscal leadership.

Inflation can be stabilized at a level that delivers the necessary present value of surpluses.

But reducing inflation at time t requires increasing inflation by more than the initial reduction at a future date $t + T$.

\[
\Delta \pi_t + (1 + r)^T \Delta \pi_t = 0
\]
The central bank’s ability to control inflation is limited in the case with fiscal leadership.

Inflation can be stabilized at a level that delivers the necessary present value of surpluses.

But reducing inflation at time t requires increasing inflation by more than the initial reduction at a future date $t + T$.

Given $K_{m,t} = b_t - K_{f,t}$ and

\[K_{m,t} \equiv yE_t \sum_{j=0}^{\infty} (1 + r)^{-j} \pi_{t+j} \]

the changes in inflation must satisfy

\[\Delta \pi_t + (1 + r)^{-T} E_t \Delta \pi_{t+T} = 0 \]
In our simple model implying

$$\Delta \pi_t + (1 + r)^{-T} E_t \Delta \pi_{t+T} = 0$$

we get

$$E_t \Delta \pi_{t+T} = -(1 + r)^T \Delta \pi_t$$
Intuition and Extensions

In our simple model implying

\[\Delta \pi_t + (1 + r)^{-T} E_t \Delta \pi_{t+T} = 0 \]

we get

\[E_t \Delta \pi_{t+T} = -(1 + r)^T \Delta \pi_t \]

More generally, reducing seigniorage revenues at \(t \) entails issuing bonds that must be redeemed with interest, by collecting more seigniorage later.
Intuition and Extensions

In our simple model implying

$$\Delta \pi_t + (1 + r)^{-T} E_t \Delta \pi_{t+T} = 0$$

we get

$$E_t \Delta \pi_{t+T} = -(1 + r)^T \Delta \pi_t$$

More generally, reducing seigniorage revenues at \(t \) entails issuing bonds that must be redeemed with interest, by collecting more seigniorage later.

We will revisit this and other implications of the Monetarist Arithmetic after we discuss the Fiscal Theory of the Price Level.
The Fiscal Theory of the Price Level (FTPL) filled a number of gaps in previous analyses of monetary equilibrium by addressing issues like

- the nominal anchor under passive interest-rate rules (or an interest-rate peg)
- the resolution of Sargent and Wallace's game of chicken
- our interpretation of the public sector's PVBC assumptions about fiscal policy that were left implicit in monetary theory

The FTPL emphasizes the role of nominal public-sector liabilities and their valuation.

Although the theory remains controversial, current concerns about the fiscal outlook have renewed interest in the FTPL.
The Fiscal Theory of the Price Level (FTPL) filled a number of gaps in previous analyses of monetary equilibrium by addressing issues like:

- the nominal anchor under passive interest-rate rules (or an interest-rate peg)
The Fiscal Theory of the Price Level (FTPL) filled a number of gaps in previous analyses of monetary equilibrium by addressing issues like:

- the nominal anchor under passive interest-rate rules (or an interest-rate peg)
- the resolution of Sargent and Wallace’s game of chicken
The Fiscal Theory of the Price Level (FTPL) filled a number of gaps in previous analyses of monetary equilibrium by addressing issues like:

- the nominal anchor under passive interest-rate rules (or an interest-rate peg)
- the resolution of Sargent and Wallace’s game of chicken
- our interpretation of the public sector’s PVBC
The Fiscal Theory of the Price Level (FTPL) filled a number of gaps in previous analyses of monetary equilibrium by addressing issues like:

- the nominal anchor under passive interest-rate rules (or an interest-rate peg)
- the resolution of Sargent and Wallace’s game of chicken
- our interpretation of the public sector’s PVBC
- assumptions about fiscal policy that were left implicit in monetary theory
The Fiscal Theory of the Price Level (FTPL) filled a number of gaps in previous analyses of monetary equilibrium by addressing issues like:

- the nominal anchor under passive interest-rate rules (or an interest-rate peg)
- the resolution of Sargent and Wallace’s game of chicken
- our interpretation of the public sector's PVBC
- assumptions about fiscal policy that were left implicit in monetary theory

The FTPL emphasizes the role of nominal public-sector liabilities and their valuation.
The Fiscal Theory of the Price Level (FTPL) filled a number of gaps in previous analyses of monetary equilibrium by addressing issues like:

- the nominal anchor under passive interest-rate rules (or an interest-rate peg)
- the resolution of Sargent and Wallace’s game of chicken
- our interpretation of the public sector’s PVBC
- assumptions about fiscal policy that were left implicit in monetary theory

The FTPL emphasizes the role of nominal public-sector liabilities and their valuation.

Although the theory remains controversial, current concerns about the fiscal outlook have renewed interest in the FTPL.
In our simple models, the government budget equation,

\[M_{t+1} + \frac{B_{t+1}}{1 + i_t} = M_t + B_t + P_t (G_t - \tau_t), \]

governs the evolution of public-sector liabilities (\(B \) is the face value of nominal bonds sold at a discount \(i \))
Nominal Liabilities

- In our simple models, the government budget equation,

\[M_{t+1} + \frac{B_{t+1}}{(1 + i_t)} = M_t + B_t + P_t (G_t - \tau_t), \]

governs the evolution of public-sector liabilities (\(B \) is the face value of nominal bonds sold at a discount \(i \))

- It will be convenient to rewrite this in terms of total public-sector liabilities (\(M + B \)):

\[\frac{M_{t+1} + B_{t+1}}{(1 + i_t)} = M_t + B_t + P_t (G_t - \tau_t) - \frac{i_t M_{t+1}}{1 + i_t}, \] (2)
In our simple models, the government budget equation,

\[M_{t+1} + \frac{B_{t+1}}{(1 + i_t)} = M_t + B_t + P_t (G_t - \tau_t), \]

governs the evolution of public-sector liabilities (\(B\) is the face value of nominal bonds sold at a discount \(i\)).

It will be convenient to rewrite this in terms of total public-sector liabilities (\(M + B\)):

\[\frac{M_{t+1} + B_{t+1}}{(1 + i_t)} = M_t + B_t + P_t (G_t - \tau_t) - \frac{i_t M_{t+1}}{1 + i_t}, \tag{2} \]

The last term on the right-hand side is the discounted value of central-bank transfers to the treasury.
Nominal Liabilities

- In our simple models, the government budget equation,

\[M_{t+1} + \frac{B_{t+1}}{1 + i_t} = M_t + B_t + P_t (G_t - \tau_t), \]

governs the evolution of public-sector liabilities (\(B \) is the face value of nominal bonds sold at a discount \(i \))

- It will be convenient to rewrite this in terms of total public-sector liabilities (\(M + B \)):

\[\frac{M_{t+1} + B_{t+1}}{1 + i_t} = M_t + B_t + P_t (G_t - \tau_t) - \frac{i_t M_{t+1}}{1 + i_t}, \quad (2) \]

- The last term on the right-hand side is the discounted value of central-bank transfers to the treasury

- Define the \textbf{predetermined} level of \textbf{nominal} public-sector \textbf{liabilities} as \(L_t = M_t + B_t \)
Again, the exposition is easier (and gives the basic intuition for some results) if we use the CIA model with a constant endowment y and constant government purchases G.

Iterating forward and imposing the household’s transversality condition (which is just an equilibrium condition stating that households satisfy their own PVBC), we get

$$L_t P_t = E_t \infty \sum_{j=0} \left(1 + r \right)^j S_t + j + it + j + y(3)$$

where $S_t = \tau_t G$ is the primary surplus exclusive of central-bank transfers.
Again, the exposition is easier (and gives the basic intuition for some results) if we use the CIA model with a constant endowment y and constant government purchases G.

- these assumptions imply a constant real interest rate, and we can write (2) as

$$\frac{L_t}{P_t} = \tau_t + \left(\frac{i_t}{1 + i_t} \right) y - G + (1 + r)^{-1} E_t \left(\frac{L_{t+1}}{P_{t+1}} \right)$$
Real Liabilities in Equilibrium

- Again, the exposition is easier (and gives the basic intuition for some results) if we use the CIA model with a constant endowment y and constant government purchases G
 - these assumptions imply a constant real interest rate, and we can write (2) as
 \[
 \frac{L_t}{P_t} = \tau_t + \left(\frac{i_t}{1 + i_t}\right)y - G + (1 + r)^{-1} E_t \left(\frac{L_{t+1}}{P_{t+1}}\right)
 \]

- Iterating forward and imposing the household’s transversality condition (which is just an equilibrium condition stating that households satisfy their own PVBC), we get
 \[
 \frac{L_t}{P_t} = E_t \sum_{j=0}^{\infty} (1 + r)^{-j} \left[S_{t+j} + \left(\frac{i_{t+j}}{1 + i_{t+j}}\right)y\right]
 \] (3)
 where $S_t = \tau_t - G$ is the primary surplus exclusive of central-bank transfers
The main theoretical observation of the FTPL is that (3),

\[
\frac{L_t}{P_t} = E_t \sum_{j=0}^{\infty} (1 + r)^{-j} \left[S_{t+j} + \left(\frac{i_{t+j}}{1 + i_{t+j}} \right) y \right],
\]

is NOT a constraint; it is an equilibrium condition.
The main theoretical observation of the FTPL is that

\[
\frac{L_t}{P_t} = E_t \sum_{j=0}^{\infty} (1 + r)^{-j} \left[S_{t+j} + \left(\frac{i_{t+j}}{1 + i_{t+j}} \right) y \right],
\]

is NOT a constraint; it is an equilibrium condition

In our simple CIA model, with constant values of \(y \) and \(r \), (3) relates real public-sector liabilities to the sequences \(\{S_t\} \) and \(\{i_t\} \), which we may specify as policy instruments
The main theoretical observation of the FTPL is that (3),

\[
\frac{L_t}{P_t} = E_t \sum_{j=0}^{\infty} (1 + r)^{-j} \left[S_{t+j} + \left(\frac{i_{t+j}}{1 + i_{t+j}} \right) y \right],
\]

is NOT a constraint; it is an equilibrium condition.

In our simple CIA model, with constant values of \(y \) and \(r \), (3) relates real public-sector liabilities to the sequences \(\{S_t\} \) and \(\{i_t\} \), which we may specify as policy instruments.

- since \(L_t \) is predetermined, any change in the right-hand-side of (3) must be accompanied by a change in \(P_t \).
CIA Model

The main theoretical observation of the FTPL is that (3),

$$\frac{L_t}{P_t} = E_t \sum_{j=0}^{\infty} (1 + r)^{-j} \left[S_{t+j} + \left(\frac{i_{t+j}}{1 + i_{t+j}} \right) y \right] ,$$

is NOT a constraint; it is an equilibrium condition.

In our simple CIA model, with constant values of y and r, (3) relates real public-sector liabilities to the sequences $\{S_t\}$ and $\{i_t\}$, which we may specify as policy instruments:

- since L_t is predetermined, any change in the right-hand-side of (3) must be accompanied by a change in P_t
- the price level P_t is pinned down under an interest-rate peg and exogenous $\{S_t\}$
The main theoretical observation of the FTPL is that (3),

\[
\frac{L_t}{P_t} = E_t \sum_{j=0}^{\infty} (1 + r)^{-j} \left[S_{t+j} + \left(\frac{i_{t+j}}{1 + i_{t+j}} \right) y \right],
\]

is NOT a constraint; it is an equilibrium condition.

In our simple CIA model, with constant values of \(y \) and \(r \), (3) relates real public-sector liabilities to the sequences \(\{S_t\} \) and \(\{i_t\} \), which we may specify as policy instruments:

- since \(L_t \) is predetermined, any change in the right-hand-side of (3) must be accompanied by a change in \(P_t \)
- the price level \(P_t \) is pinned down under an interest-rate peg and exogenous \(\{S_t\} \)
- this gives us another interpretation of how interest-rate pegs may work in reality: fiscal policy may set the nominal anchor.
The main theoretical observation of the FTPL is that (3),

\[\frac{L_t}{P_t} = E_t \sum_{j=0}^{\infty} (1 + r)^{-j} \left[S_{t+j} + \left(\frac{i_{t+j}}{1 + i_{t+j}} \right) y \right], \]

is NOT a constraint; it is an equilibrium condition.

In our simple CIA model, with constant values of \(y \) and \(r \), (3) relates real public-sector liabilities to the sequences \(\{S_t\} \) and \(\{i_t\} \), which we may specify as policy instruments.

- since \(L_t \) is predetermined, any change in the right-hand-side of (3) must be accompanied by a change in \(P_t \).
- the price level \(P_t \) is pinned down under an interest-rate peg and exogenous \(\{S_t\} \).
- this gives us another interpretation of how interest-rate pegs may work in reality: fiscal policy may set the nominal anchor.

This also offers a resolution of Sargent and Wallace’s game of chicken: \(P_t \) can adjust to satisfy the PVBC even if \(\{S_t\} \) and \(\{i_t\} \) are both set exogenously.
The FTPL’s formal contribution to Monetary Theory is in clarifying the role of fiscal policy in monetary equilibrium.
The FTPL’s formal contribution to Monetary Theory is in clarifying the role of fiscal policy in monetary equilibrium.

The equilibrium price level P_t in a monetary model must satisfy two conditions: a condition like (3) as well as an equilibrium condition in the market for money, like the CIA constraint

$$M_{t+1} = P_t y$$
The FTPL’s formal contribution to Monetary Theory is in clarifying the role of fiscal policy in monetary equilibrium.

The equilibrium price level P_t in a monetary model must satisfy two conditions: a condition like (3) as well as an equilibrium condition in the market for money, like the CIA constraint

$$M_{t+1} = P_t y$$

Which (if any) of the two equations "determines" the price level depends on how we specify the fiscal and monetary policy regime and the rest of the model.
The FTPL’s formal contribution to Monetary Theory is in clarifying the role of fiscal policy in monetary equilibrium.

The equilibrium price level P_t in a monetary model must satisfy two conditions: a condition like (3) as well as an equilibrium condition in the market for money, like the CIA constraint

$$M_{t+1} = P_t y$$

Which (if any) of the two equations "determines" the price level depends on how we specify the fiscal and monetary policy regime and the rest of the model.

More generally (in other models), the analogue of (3) is one restriction on the equilibrium time paths of several variables.
Woodford (2001) defines a Ricardian policy regime as one in which the fiscal authority adjusts \(\{ S_t \} \) to satisfy the "PVBC" (3) for any path that the other variables (in particular, the price level) may take in equilibrium.
Woodford (2001) defines a Ricardian policy regime as one in which the fiscal authority adjusts \(\{ S_t \} \) to satisfy the "PVBC" (3) for any path that the other variables (in particular, the price level) may take in equilibrium.

A Ricardian fiscal policy does not set a nominal anchor.
Woodford (2001) defines a Ricardian policy regime as one in which the fiscal authority adjusts $\{S_t\}$ to satisfy the "PVBC" (3) for any path that the other variables (in particular, the price level) may take in equilibrium.

A Ricardian fiscal policy does not set a nominal anchor.

For example, if a monetary contraction reduces P_t (holding other variables constant for concreteness), a Ricardian fiscal policy increases the primary surplus (at some point in time) to satisfy (3).
Woodford (2001) defines a Ricardian policy regime as one in which the fiscal authority adjusts \(\{ S_t \} \) to satisfy the "PVBC" (3) for any path that the other variables (in particular, the price level) may take in equilibrium.

A Ricardian fiscal policy does not set a nominal anchor.

For example, if a monetary contraction reduces \(P_t \) (holding other variables constant for concreteness), a Ricardian fiscal policy increases the primary surplus (at some point in time) to satisfy (3).

Some conventional results in monetary theory implicitly presume a Ricardian policy regime.
Woodford (2001) defines a Ricardian policy regime as one in which the fiscal authority adjusts $\{S_t\}$ to satisfy the "PVBC" (3) for any path that the other variables (in particular, the price level) may take in equilibrium.

A Ricardian fiscal policy does not set a nominal anchor.

For example, if a monetary contraction reduces P_t (holding other variables constant for concreteness), a Ricardian fiscal policy increases the primary surplus (at some point in time) to satisfy (3).

Some conventional results in monetary theory implicitly presume a Ricardian policy regime.

Ricardian Equivalence propositions implicitly presume a Ricardian policy regime as well.
Woodford (2001) discusses equilibrium dynamics under Non-Ricardian (NR) policy regimes.
Woodford (2001) discusses equilibrium dynamics under Non-Ricardian (NR) policy regimes.

For example, in our simple CIA model (with exogenous consumption), we may consider a monetary policy that pegs the nominal interest rate and a fiscal policy that sets an exogenous sequence \(\{S_t\} \).
Woodford (2001) discusses equilibrium dynamics under Non-Ricardian (NR) policy regimes. For example, in our simple CIA model (with exogenous consumption), we may consider a monetary policy that pegs the nominal interest rate and a fiscal policy that sets an exogenous sequence \(\{S_t\} \). Under this regime, (3) determines the price level; so, the conventional price indeterminacy result does not hold.
Woodford (2001) discusses equilibrium dynamics under Non-Ricardian (NR) policy regimes.

For example, in our simple CIA model (with exogenous consumption), we may consider a monetary policy that pegs the nominal interest rate and a fiscal policy that sets an exogenous sequence \(\{ S_t \} \):

- Under this regime, (3) determines the price level; so, the conventional price indeterminacy result does not hold.
- Monetary policy still controls expected inflation (through the Fisher equation) but fiscal shocks can lead to inflation volatility.
Woodford (2001) discusses equilibrium dynamics under Non-Ricardian (NR) policy regimes.

For example, in our simple CIA model (with exogenous consumption), we may consider a monetary policy that pegs the nominal interest rate and a fiscal policy that sets an exogenous sequence \(\{ S_t \} \).

- under this regime, (3) determines the price level; so, the conventional price indeterminacy result does not hold.
- monetary policy still controls expected inflation (through the Fisher equation) but fiscal shocks can lead to inflation volatility.
- since nominal liabilities \((L_t) \) are predetermined, a fiscal expansion (a decrease in current or expected surpluses) increases the price level.
Non-Ricardian Policy Regimes

- Woodford (2001) discusses equilibrium dynamics under Non-Ricardian (NR) policy regimes.
- For example, in our simple CIA model (with exogenous consumption), we may consider a monetary policy that pegs the nominal interest rate and a fiscal policy that sets an exogenous sequence \(\{ S_t \} \).
 - under this regime, (3) determines the price level; so, the conventional price indeterminacy result does not hold.
 - monetary policy still controls expected inflation (through the Fisher equation) but fiscal shocks can lead to inflation volatility.
 - since nominal liabilities \((L_t) \) are predetermined, a fiscal expansion (a decrease in current or expected surpluses) increases the price level.
- More generally, Ricardian Equivalence will not hold if we introduce production in this setup.
Intuition

How does a deficit shock raise the price level in the NR example above?

Consider (3)

\[L_t P_t = E_t \sum_{j=0}^{\infty} \left(1 + r \right)^j S_{t+j} + \Delta_{t+j} y \]

and suppose the expected present value of surpluses falls at time \(t \) (say, there is bad news about the political prospects of a future retrenchment) the right-hand side of (3) falls, and the equilibrium condition is not satisfied at the old price level: real liabilities are too high, this means the households' PVBC is not satisfied (using Walras' Law) at the old price level: real assets are too high households increase their expenditures and \(P_t \) rises to its new equilibrium value.
How does a deficit shock raise the price level in the NR example above?

Consider (3)

\[
\frac{L_t}{P_t} = E_t \sum_{j=0}^{\infty} (1 + r)^{-j} \left[S_{t+j} + \left(\frac{i_{t+j}}{1 + i_{t+j}} \right) y \right]
\]

and suppose the expected present value of surpluses falls at time \(t \) (say, there is bad news about the political prospects of a fiscal retrenchment)
Intuition

- How does a deficit shock raise the price level in the NR example above?
- Consider (3)

\[
\frac{L_t}{P_t} = E_t \sum_{j=0}^{\infty} (1 + r)^{-j} \left[S_{t+j} + \left(\frac{i_{t+j}}{1 + i_{t+j}} \right) y \right]
\]

and suppose the expected present value of surpluses falls at time \(t \) (say, there is bad news about the political prospects of a fiscal retrenchment)

- the right-hand side of (3) falls, and the equilibrium condition is not satisfied at the old price level: real liabilities are too high
Intuition

- How does a deficit shock raise the price level in the NR example above?
- Consider (3)

\[
\frac{L_t}{P_t} = E_t \sum_{j=0}^{\infty} (1 + r)^{-j} \left[S_{t+j} + \left(\frac{i_{t+j}}{1 + i_{t+j}} \right) y \right]
\]

and suppose the expected present value of surpluses falls at time \(t \) (say, there is bad news about the political prospects of a fiscal retrenchment)

- the right-hand side of (3) falls, and the equilibrium condition is not satisfied at the old price level: real liabilities are too high
- this means the households’ PVBC is not satisfied (using Walras’s Law) at the old price level: real assets are too high
Intuition

- How does a deficit shock raise the price level in the NR example above?
- Consider (3)

\[
\frac{L_t}{P_t} = E_t \sum_{j=0}^{\infty} (1 + r)^{-j} \left[S_{t+j} + \left(\frac{i_{t+j}}{1+i_{t+j}} \right) y \right]
\]

and suppose the expected present value of surpluses falls at time \(t \) (say, there is bad news about the political prospects of a fiscal retrenchment)

- the right-hand side of (3) falls, and the equilibrium condition is not satisfied at the old price level: real liabilities are too high
- this means the households’ PVBC is not satisfied (using Walras’s Law) at the old price level: real assets are too high
- households increase their expenditures and \(P_t \) rises to its new equilibrium value
Coordination in Policy Regimes

- The possibility of NR regimes offers a resolution of Sargent and Wallace’s policy coordination problem (game of chicken): given the surpluses set by the fiscal authority and the transfers from the central bank, P_t can adjust to satisfy (3)

As we saw, the FTPL also offers a potentially interesting answer to how the nominal anchor was set during some historical episodes [e.g., the US in the 1950s or 1970s] with passive monetary policy. But this raises questions about how fiscal and monetary policies may be coordinated so that one (and only one) policy sets the nominal anchor. Was US fiscal policy NR before 1979 and fortuitously change once the Fed switched to an active policy? There is still a policy coordination problem in the model (with potential solutions that we will discuss later).
The possibility of NR regimes offers a resolution of Sargent and Wallace’s policy coordination problem (game of chicken): given the surpluses set by the fiscal authority and the transfers from the central bank, P_t can adjust to satisfy (3).

As we saw, the FTPL also offers a potentially interesting answer to how the nominal anchor was set during some historical episodes [e.g., the US in the 1950s or 1970s] with passive monetary policy.
The possibility of NR regimes offers a resolution of Sargent and Wallace’s policy coordination problem (game of chicken): given the surpluses set by the fiscal authority and the transfers from the central bank, P_t can adjust to satisfy (3).

As we saw, the FTPL also offers a potentially interesting answer to how the nominal anchor was set during some historical episodes [e.g., the US in the 1950s or 1970s] with passive monetary policy.

But this raises questions about how fiscal and monetary policies may be coordinated so that one (and only one) policy sets the nominal anchor.
Coordination in Policy Regimes

- The possibility of NR regimes offers a resolution of Sargent and Wallace’s policy coordination problem (game of chicken): given the surpluses set by the fiscal authority and the transfers from the central bank, P_t can adjust to satisfy (3).

- As we saw, the FTPL also offers a potentially interesting answer to how the nominal anchor was set during some historical episodes [e.g., the US in the 1950s or 1970s] with passive monetary policy.

- But this raises questions about how fiscal and monetary policies may be coordinated so that one (and only one) policy sets the nominal anchor.

- Was US fiscal policy NR before 1979 and fortuitously change once the Fed switched to an active policy?
The possibility of NR regimes offers a resolution of Sargent and Wallace’s policy coordination problem (game of chicken): given the surpluses set by the fiscal authority and the transfers from the central bank, \(P_t \) can adjust to satisfy (3)

As we saw, the FTPL also offers a potentially interesting answer to how the nominal anchor was set during some historical episodes [e.g., the US in the 1950s or 1970s] with passive monetary policy

But this raises questions about how fiscal and monetary policies may be coordinated so that one (and only one) policy sets the nominal anchor

Was US fiscal policy NR before 1979 and fortuitously change once the Fed switched to an active policy?

There is still a **policy coordination problem** in the model (with potential solutions that we will discuss later)
What if monetary policy is active (obeys the Taylor Principle or sets the money supply in our simple CIA model) and fiscal policy is NR?

Application: Loyo (1999), cited in CCD (2010), argues that Brazilian monetary policy switched from passive to active in 1980, while fiscal policy was NR before and after the switch as the FTPL would predict, the economy was reasonably stable in the 1970s after the switch to active monetary policy, inflation and interest rates began to grow rapidly.
What if monetary policy is active (obeys the Taylor Principle or sets the money supply in our simple CIA model) and fiscal policy is NR?

- the price level cannot adjust to satisfy both equilibrium conditions
What if monetary policy is active (obeys the Taylor Principle or sets the money supply in our simple CIA model) and fiscal policy is NR?

- the price level cannot adjust to satisfy both equilibrium conditions
- the only solution (under the FTPL) may be an explosive inflation path

Application: Loyo (1999), cited in CCD (2010), argues that Brazilian monetary policy switched from passive to active in 1980, while fiscal policy was NR before and after the switch; as the FTPL would predict, the economy was reasonably stable in the 1970s after the switch to active monetary policy, inflation and interest rates began to grow rapidly.
What if monetary policy is active (obeys the Taylor Principle or sets the money supply in our simple CIA model) and fiscal policy is NR?

- the price level cannot adjust to satisfy both equilibrium conditions
- the only solution (under the FTPL) may be an explosive inflation path

Application: Loyo (1999), cited in CCD (2010), argues that Brazilian monetary policy switched from passive to active in 1980, while fiscal policy was NR before and after the switch.
What if monetary policy is active (obeys the Taylor Principle or sets the money supply in our simple CIA model) and fiscal policy is NR?

- the price level cannot adjust to satisfy both equilibrium conditions
- the only solution (under the FTPL) may be an explosive inflation path

Application: Loyo (1999), cited in CCD (2010), argues that Brazilian monetary policy switched from passive to active in 1980, while fiscal policy was NR before and after the switch

- as the FTPL would predict, the economy was reasonably stable in the 1970s
What if monetary policy is active (obeys the Taylor Principle or sets the money supply in our simple CIA model) and fiscal policy is NR?

- the price level cannot adjust to satisfy both equilibrium conditions
- the only solution (under the FTPL) may be an explosive inflation path

Application: Loyo (1999), cited in CCD (2010), argues that Brazilian monetary policy switched from passive to active in 1980, while fiscal policy was NR before and after the switch

- as the FTPL would predict, the economy was reasonably stable in the 1970s
- after the switch to active monetary policy, inflation and interest rates began to grow rapidly
What if monetary policy is active (obeys the Taylor Principle or sets the money supply in our simple CIA model) and fiscal policy is NR?

- the price level cannot adjust to satisfy both equilibrium conditions
- the only solution (under the FTPL) may be an explosive inflation path

Application: Loyo (1999), cited in CCD (2010), argues that Brazilian monetary policy switched from passive to active in 1980, while fiscal policy was NR before and after the switch

- as the FTPL would predict, the economy was reasonably stable in the 1970s
- after the switch to active monetary policy, inflation and interest rates began to grow rapidly

What if monetary policy is passive and fiscal policy is Ricardian?
What if monetary policy is active (obeys the Taylor Principle or sets the money supply in our simple CIA model) and fiscal policy is NR?

- the price level cannot adjust to satisfy both equilibrium conditions
- the only solution (under the FTPL) may be an explosive inflation path

Application: Loyo (1999), cited in CCD (2010), argues that Brazilian monetary policy switched from passive to active in 1980, while fiscal policy was NR before and after the switch

- as the FTPL would predict, the economy was reasonably stable in the 1970s
- after the switch to active monetary policy, inflation and interest rates began to grow rapidly

What if monetary policy is passive and fiscal policy is Ricardian?

- nominal indeterminacy arises under the FTPL