Monetary and Fiscal Policies: Fiscal Multipliers in Recessions

Behzad Diba

Georgetown University

May 2013
A Growing Literature

- Most of the existing theoretical and empirical research on stabilization policy has relied on linear(ized) models.

- Our only defense is that non-linear setups are hard to handle in policy applications with realistic features.

- A growing literature explores the potential importance of non-linearities.

- The most active research area on this front has focused on the cross-country comparability of fiscal multipliers in a liquidity trap and on what makes fiscal policy in a liquidity trap different from fiscal policy in a currency union (another situation in which the interest rate may not adjust to close the output gap).

- There is also some work on how fiscal multipliers may be state-dependent even when the zero-bound on the nominal interest rate is not binding.

- In particular, recent work has explored how the GDP gap, financial frictions, and the debt-to-GDP ratio may matter for the effects of fiscal policy.
A Growing Literature

- Most of the existing theoretical and empirical research on stabilization policy has relied on linear(ized) models.
 - Our only defense is that non-linear setups are hard to handle in policy applications with realistic features.
A Growing Literature

Most of the existing theoretical and empirical research on stabilization policy has relied on linear(ized) models

- our only defense is that non-linear setups are hard to handle in policy applications with realistic features
- but a growing literature explores the potential importance of non-linearities
Most of the existing theoretical and empirical research on stabilization policy has relied on linear(ized) models. Our only defense is that non-linear setups are hard to handle in policy applications with realistic features. But a growing literature explores the potential importance of non-linearities.

The most active research area on this front has focused on fiscal multipliers in a liquidity trap and on what makes fiscal policy in a liquidity trap different from fiscal policy in a currency union (another situation in which the interest rate may not adjust to close the output gap). There is also some work on how fiscal multipliers may be state-dependent even when the zero-bound on the nominal interest rate is not binding. In particular, recent work has explored how the GDP gap, financial frictions, and the debt-to-GDP ratio may matter for the effects of fiscal policy.
A Growing Literature

- Most of the existing theoretical and empirical research on stabilization policy has relied on linear(ized) models
 - our only defense is that non-linear setups are hard to handle in policy applications with realistic features
 - but a growing literature explores the potential importance of non-linearities

- The most active research area on this front has focused on fiscal multipliers in a liquidity trap
 - and on what makes fiscal policy in a liquidity trap different from fiscal policy in a currency union (another situation in which the interest rate may not adjust to close the output gap)
A Growing Literature

- Most of the existing theoretical and empirical research on stabilization policy has relied on linear(ized) models
 - our only defense is that non-linear setups are hard to handle in policy applications with realistic features
 - but a growing literature explores the potential importance of non-linearities

- The most active research area on this front has focused on fiscal multipliers in a liquidity trap
 - and on what makes fiscal policy in a liquidity trap different from fiscal policy in a currency union (another situation in which the interest rate may not adjust to close the output gap)

- There is also some work on how fiscal multipliers may be state-dependent even when the zero-bound on the nominal interest rate is not binding
A Growing Literature

- Most of the existing theoretical and empirical research on stabilization policy has relied on linear(ized) models.
 - Our only defense is that non-linear setups are hard to handle in policy applications with realistic features.
 - But a growing literature explores the potential importance of non-linearities.

- The most active research area on this front has focused on fiscal multipliers in a liquidity trap.
 - And on what makes fiscal policy in a liquidity trap different from fiscal policy in a currency union (another situation in which the interest rate may not adjust to close the output gap).

- There is also some work on how fiscal multipliers may be state-dependent even when the zero-bound on the nominal interest rate is not binding.
 - In particular, recent work has explored how the GDP gap, financial frictions, and the debt-to-GDP ratio may matter for the effects of fiscal policy.

- With the nominal interest rate stuck at zero, the inflationary pressures of the fiscal expansion serve to lower the expected real interest rate.
Woodford (2011) summarizes and cites Eggertsson’s (2009) model of fiscal policy in a liquidity trap

- with the nominal interest rate stuck at zero, the inflationary pressures of the fiscal expansion serve to lower the expected real interest rate
- this makes the multiplier for government purchases larger than one
Woodford (2011) summarizes and cites Eggertsson’s (2009) model of fiscal policy in a liquidity trap

- with the nominal interest rate stuck at zero, the inflationary pressures of the fiscal expansion serve to lower the expected real interest rate
- this makes the multiplier for government purchases larger than one

Christiano, Eichenbaum and Rebelo (2011) study a linear approximation to a NK model and find that the fiscal multiplier in a liquidity trap can be very large (larger than 2)
Woodford (2011) summarizes and cites Eggertsson’s (2009) model of fiscal policy in a liquidity trap:

- with the nominal interest rate stuck at zero, the inflationary pressures of the fiscal expansion serve to lower the expected real interest rate
- this makes the multiplier for government purchases larger than one

Christiano, Eichenbaum and Rebelo (2011) study a linear approximation to a NK model and find that the fiscal multiplier in a liquidity trap can be very large (larger than 2)

Erceg and Lindé (2011) consider the non-linear model and discuss important qualifications that cast doubt on large multipliers
Woodford (2011) summarizes and cites Eggertsson’s (2009) model of fiscal policy in a liquidity trap:
- with the nominal interest rate stuck at zero, the inflationary pressures of the fiscal expansion serve to lower the expected real interest rate
- this makes the multiplier for government purchases larger than one

Christiano, Eichenbaum and Rebelo (2011) study a linear approximation to a NK model and find that the fiscal multiplier in a liquidity trap can be very large (larger than 2)

Erceg and Lindé (2011) consider the non-linear model and discuss important qualifications that cast doubt on large multipliers

Cogan, Cwik, Taylor and Wieland (2010) argue against the large-multipliers result more forcefully
Liquidity Trap

- Woodford (2011) summarizes and cites Eggertsson’s (2009) model of fiscal policy in a liquidity trap
 - with the nominal interest rate stuck at zero, the inflationary pressures of the fiscal expansion serve to lower the expected real interest rate
 - this makes the multiplier for government purchases larger than one
- Christiano, Eichenbaum and Rebelo (2011) study a linear approximation to a NK model and find that the fiscal multiplier in a liquidity trap can be very large (larger than 2)
- Erceg and Lindé (2011) consider the non-linear model and discuss important qualifications that cast doubt on large multipliers
- Cogan, Cwik, Taylor and Wieland (2010) argue against the large-multipliers result more forcefully
 - they argue, using the ECB’s (Smets&Wouters) estimated NK model, that a realistically calibrated fiscal expansion has an impact multiplier just below one, and multipliers well below one after a year or two
Farhi and Werning (2012) consider a theoretical experiment that provides useful mechanical intuition.
Farhi and Werning (2012) consider a theoretical experiment that provides useful mechanical intuition

- assume perfect foresight after an initial shock, at date t, drags the economy into the trap equilibrium with $i_t = 0$
Farhi and Werning (2012) consider a theoretical experiment that provides useful mechanical intuition

- assume perfect foresight after an initial shock, at date t, drags the economy into the trap equilibrium with $i_t = 0$
- fix the exit date T from the trap equilibrium and linearize the dynamic model (I’ll assume logarithmic utility)
Farhi and Werning (2012) consider a theoretical experiment that provides useful mechanical intuition

- assume perfect foresight after an initial shock, at date t, drags the economy into the trap equilibrium with $i_t = 0$
- fix the exit date T from the trap equilibrium and linearize the dynamic model (I’ll assume logarithmic utility)
- assume government purchases are constant except as a policy response to the trap equilibrium (during the period from t to T)
Farhi and Werning (2012) consider a theoretical experiment that provides useful mechanical intuition:

- Assume perfect foresight after an initial shock, at date t, drags the economy into the trap equilibrium with $i_t = 0$.
- Fix the exit date T from the trap equilibrium and linearize the dynamic model (I’ll assume logarithmic utility).
- Assume government purchases are constant except as a policy response to the trap equilibrium (during the period from t to T).
- Calculate the consumption gap relative to an equilibrium with flexible prices AND constant government purchases.

$$c_t = \frac{1}{T} \sum_{j=t}^{T} r_j \pi_j + 1$$
The Consumption Gap in a Liquidity Trap

The log-linear Euler equation of the representative household with logarithmic utility is

\[c_t = c_{t+1} - (i_t - \pi_{t+1}) - \log(\beta) \]

We will set \(i_t = 0 \) for the trap equilibrium and compare it to an equilibrium with flexible prices and constant government purchases. The Euler equation in the latter equilibrium is

\[c_t^* = c_{t+1}^* - r_t^* - \log(\beta) \]

The consumption gap is governed by

\[c_t^* - c_t = c_{t+1}^* - c_{t+1} - r_t^* - \pi_{t+1} \]

Assume the exit date is at \(T \) (i.e., \(c_t^* - c_t = 0 \) for \(t \geq T \)) and iterate this equation forward to get

\[c_t^* - c_t = \sum_{j=t}^{T-1} -r_j^* - \pi_{j+1} \]
Mechanical Intuition

- Farhi and Werning (2012) consider a theoretical experiment that provides useful mechanical intuition
 - assume perfect foresight after an initial shock, at date t, drags the economy into the trap equilibrium with $i_t = 0$
 - fix the exit date T from the trap equilibrium and linearize the dynamic model (I’ll assume logarithmic utility)
 - assume government purchases are constant except as a policy response to the trap equilibrium (during the period from t to T)
 - calculate the consumption gap relative to an equilibrium with flexible prices AND constant government purchases

- The consumption gap is the shortfall of actual consumption (c_t) relative to the benchmark with flexible prices (c_t^*)

$$
c_t^* - c_t = \sum_{j=t}^{T-1} -r_j^* - \pi_{j+1}
$$
Farhi and Werning (2012), following earlier work, use the consumption gap

\[c_t^* - c_t = \sum_{j=t}^{T-1} -r_j^* - \pi_{j+1} \]

to highlight some points
Farhi and Werning (2012), following earlier work, use the consumption gap

\[c_t^* - c_t = \sum_{j=t}^{T-1} -r_j^* - \pi_{j+1} \]

to highlight some points

- the shock that causes the liquidity trap makes \(r_t^* \) negative; since the central bank cannot make \(i_t \) negative, policy must work through increasing inflation
The Trap Equilibrium

- Farhi and Werning (2012), following earlier work, use the consumption gap

\[c_t^* - c_t = \sum_{j=t}^{T-1} -\pi_j - r_j^* \]

- to highlight some points
 - the shock that causes the liquidity trap makes \(r_t^* \) negative; since the central bank cannot make \(i_t \) negative, policy must work through increasing inflation
 - causing inflation is the only way a fiscal expansion works in this context: the inflation lowers the real interest rate which raises consumption, which leads to more inflation, which ... (starts another round of a multiplier process)
Farhi and Werning (2012), following earlier work, use the consumption gap

$$c_t^* - c_t = \sum_{j=t}^{T-1} -r_j^* - \pi_{j+1}$$

to highlight some points

- the shock that causes the liquidity trap makes r_t^* negative; since the central bank cannot make i_t negative, policy must work through increasing inflation
- causing inflation is the only way a fiscal expansion works in this context: the inflation lowers the real interest rate which raises consumption, which leads to more inflation, which ... (starts another round of a multiplier process)
- the fiscal multiplier has to be above one as long as the fiscal expansion is not extended beyond the duration of the trap equilibrium
Farhi and Werning’s (2012) solution to the linearized model confirms Woodford’s (2011) argument that the fiscal multiplier for an expansion within the liquidity trap is larger than one.
Non-linearities

- Farhi and Werning’s (2012) solution to the linearized model confirm Woodford’s (2011) argument that the fiscal multiplier for an expansion within the liquidity trap is larger than one.

- The simulations in Erceg and Lindé (2011) and Cogan, Cwik, Taylor and Wieland (2010) that suggest multipliers below one are for fiscal expansions that (may) continue after the economy exits the trap.
Non-linearities

- Farhi and Werning’s (2012) solution to the linearized model confirm Woodford’s (2011) argument that the fiscal multiplier for an expansion within the liquidity trap is larger than one.
 - The simulations in Erceg and Lindé (2011) and Cogan, Cwik, Taylor, and Wieland (2010) that suggest multipliers below one are for fiscal expansions that (may) continue after the economy exits the trap.
- But the results in Erceg and Lindé (2011) show that non-linear effects may be quite important if we want to think about realistic policy experiments.
Farhi and Werning’s (2012) solution to the linearized model confirm Woodford’s (2011) argument that the fiscal multiplier for an expansion within the liquidity trap is larger than one. The simulations in Erceg and Lindé (2011) and Cogan, Cwik, Taylor and Wieland (2010) that suggest multipliers below one are for fiscal expansions that (may) continue after the economy exits the trap. But the results in Erceg and Lindé (2011) show that non-linear effects may be quite important if we want to think about realistic policy experiments. A fiscal expansion can expedite the exit from the trap equilibrium.
Non-linearities

- Farhi and Werning’s (2012) solution to the linearized model confirm Woodford’s (2011) argument that the fiscal multiplier for an expansion within the liquidity trap is larger than one.
 - the simulations in Erceg and Lindé (2011) and Cogan, Cwik, Taylor and Wieland (2010) that suggest multipliers below one are for fiscal expansions that (may) continue after the economy exits the trap.
- But the results in Erceg and Lindé (2011) show that non-linear effects may be quite important if we want to think about realistic policy experiments.
 - a fiscal expansion can expedite the exit from the trap equilibrium.
 - the timing of the expansion and implementation lags can play a critical role.
Non-linearities

Farhi and Werning’s (2012) solution to the linearized model confirm Woodford’s (2011) argument that the fiscal multiplier for an expansion within the liquidity trap is larger than one.

- The simulations in Erceg and Lindé (2011) and Cogan, Cwik, Taylor and Wieland (2010) that suggest multipliers below one are for fiscal expansions that (may) continue after the economy exits the trap.

But the results in Erceg and Lindé (2011) show that non-linear effects may be quite important if we want to think about realistic policy experiments:

- A fiscal expansion can expedite the exit from the trap equilibrium.
- The timing of the expansion and implementation lags can play a critical role.
- The multiplier for a large fiscal expansion may be much smaller than the one for a marginal change in government purchases.
There is a deceptive similarity between the NK model of a liquidity trap and the NK model of a currency union: in either case, a fiscal expansion can occur with no monetary-policy response.
There is a deceptive similarity between the NK model of a liquidity trap and the NK model of a currency union: in either case, a fiscal expansion can occur with no monetary-policy response. Farhi and Werning (2012) and Erceg and Lindé (2012) clarify that the similarities are more apparent than real.
Currency Union

- There is a deceptive similarity between the NK model of a liquidity trap and the NK model of a currency union: in either case, a fiscal expansion can occur with no monetary-policy response.

- Farhi and Werning (2012) and Erceg and Lindé (2012) clarify that the similarities are more apparent than real. The fiscal multiplier in a currency union is below one (as in the case of the closed-economy NK model).

- The trap equilibrium is different because the price increase caused by the fiscal expansion will not be reversed later. The trap equilibrium is the forward-looking solution to a model with a stable eigenvalue; expected future shocks can have large effects in this case.
Currency Union

- There is a deceptive similarity between the NK model of a liquidity trap and the NK model of a currency union: in either case, a fiscal expansion can occur with no monetary-policy response.
- Farhi and Werning (2012) and Erceg and Lindé (2012) clarify that the similarities are more apparent than real.
 - The fiscal multiplier in a currency union is below one (as in the case of the closed-economy NK model).
 - A fiscal expansion in, say, France raises the price of French goods relative to other goods in the Eurozone—this crowds out net exports.
 - The relative price must eventually fall back to the long-run equilibrium level—expected decrease in price raises the real interest rate in France, which crowds out consumption.
 - The trap equilibrium is different because the price increase caused by the fiscal expansion will not be reversed later.
 - The trap equilibrium is the forward-looking solution to a model with a stable eigenvalue; expected future shocks can have large effects in this case.
There is a deceptive similarity between the NK model of a liquidity trap and the NK model of a currency union: in either case, a fiscal expansion can occur with no monetary-policy response.

Farhi and Werning (2012) and Erceg and Lindé (2012) clarify that the similarities are more apparent than real:

- The fiscal multiplier in a currency union is below one (as in the case of the closed-economy NK model).
- A fiscal expansion in, say, France raises the price of French goods relative to other goods in the Eurozone—this crowds out net exports.
- The relative price must eventually fall back to the long-run equilibrium level— the expected decrease in price raises the real interest rate in France, which crowds out consumption.
Currency Union

- There is a deceptive similarity between the NK model of a liquidity trap and the NK model of a currency union: in either case, a fiscal expansion can occur with no monetary-policy response.
- Farhi and Werning (2012) and Erceg and Lindé (2012) clarify that the similarities are more apparent than real:
 - The fiscal multiplier in a currency union is below one (as in the case of the closed-economy NK model).
 - A fiscal expansion in, say, France raises the price of French goods relative to other goods in the Eurozone—this crowds out net exports.
 - The relative price must eventually fall back to the long-run equilibrium level—the expected decrease in price raises the real interest rate in France, which crowds out consumption.
 - The trap equilibrium is different because the price increase caused by the fiscal expansion will not be reversed later.
Currency Union

- There is a deceptive similarity between the NK model of a liquidity trap and the NK model of a currency union: in either case, a fiscal expansion can occur with no monetary-policy response.

- Farhi and Werning (2012) and Erceg and Lindé (2012) clarify that the similarities are more apparent than real:
 - The fiscal multiplier in a currency union is below one (as in the case of the closed-economy NK model).
 - A fiscal expansion in, say, France raises the price of French goods relative to other goods in the Eurozone—this crowds out net exports.
 - The relative price must eventually fall back to the long-run equilibrium level— the expected decrease in price raises the real interest rate in France, which crowds out consumption.
 - The trap equilibrium is different because the price increase caused by the fiscal expansion will not be reversed later.
 - The trap equilibrium is the forward-looking solution to a model with a stable eigenvalue; expected future shocks can have large effects in this case.
Recent empirical research suggests that the size of fiscal multipliers may depend on the state of the economy.
State Dependence

- Recent empirical research suggests that the size of fiscal multipliers may depend on the state of the economy.
- Auerbach (2012) summarizes and cites Auerbach and Gorodnichenko (2012b): they find that the multiplier for government purchases is much lower when the debt-to-GDP ratio is high.
Recent empirical research suggests that the size of fiscal multipliers may depend on the state of the economy.

Auerbach (2012) summarizes and cites Auerbach and Gorodnichenko (2012b): they find that the multiplier for government purchases is much lower when the debt-to-GDP ratio is high.

- Their estimate of the multiplier at a 100% debt ratio is not significantly different from zero.
Recent empirical research suggests that the size of fiscal multipliers may depend on the state of the economy.

Auerbach (2012) summarizes and cites Auerbach and Gorodnichenko (2012b): they find that the multiplier for government purchases is much lower when the debt-to-GDP ratio is high. Their estimate of the multiplier at a 100% debt ratio is not significantly different from zero.

Auerbach (2012) summarizes and cites Auerbach and Gorodnichenko (2012a): they estimate regime switching structural VARs and find that multipliers are much larger in recessions than they are in booms.
Empirical Evidence
Auerbach and Gorodnichenko [2010]

Source: Auerbach and Gorodnichenko (2010)
Recent empirical research suggests that the size of fiscal multipliers may depend on the state of the economy.

Auerbach (2012) summarizes and cites Auerbach and Gorodnichenko (2012b): they find that the multiplier for government purchases is much lower when the debt-to-GDP ratio is high.

- Their estimate of the multiplier at a 100% debt ratio is not significantly different from zero.

Auerbach (2012) summarizes and cites Auerbach and Gorodnichenko (2012a): they estimate regime switching structural VARs and find that multipliers are much larger in recessions than they are in booms.

- And the maximum multiplier (peak effect on output over time) is larger than 2 during recessions, according to these estimates.
Empirical Evidence
Auerbach and Gorodnichenko [2010]

<table>
<thead>
<tr>
<th></th>
<th>$\max{y_h}$</th>
<th>Value</th>
<th>Std. dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td></td>
<td>1.00</td>
<td>0.32</td>
</tr>
<tr>
<td>Expansion</td>
<td></td>
<td>0.57</td>
<td>0.12</td>
</tr>
<tr>
<td>Recession</td>
<td></td>
<td>2.48</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Source: Auerbach and Gorodnichenko (2010)
Empirical Evidence

Auerbach and Gorodnichenko [2010]

<table>
<thead>
<tr>
<th></th>
<th>(\max{y_h})</th>
<th>Value</th>
<th>Std. dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defense spending</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear</td>
<td>1.16</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>Expansion</td>
<td>0.80</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Recession</td>
<td>3.56</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>Consumption spending</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear</td>
<td>1.21</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>Expansion</td>
<td>0.17</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>Recession</td>
<td>2.11</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>Investment spending</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear</td>
<td>2.12</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>Expansion</td>
<td>3.02</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Recession</td>
<td>2.85</td>
<td>0.36</td>
<td></td>
</tr>
</tbody>
</table>

Source: Auerbach and Gorodnichenko (2010)
Canzoneri, Collard, Dellas, and Diba (CCDD, 2011) develop a model in which a financial friction makes the fiscal multiplier large in recessions.
Canzoneri, Collard, Dellas, and Diba (CCDD, 2011) develop a model in which a financial friction makes the fiscal multiplier large in recessions.

- the model is based on Curdia and Woodford’s extension (as we will discuss) of the NK model to a setting with lenders and borrowers.
Canzoneri, Collard, Dellas, and Diba (CCDD, 2011) develop a model in which a financial friction makes the fiscal multiplier large in recessions. The model is based on Curdia and Woodford’s extension (as we will discuss) of the NK model to a setting with lenders and borrowers. In CCDD, the costs of financial intermediation rise in recessions.
Canzoneri, Collard, Dellas, and Diba (CCDD, 2011) develop a model in which a financial friction makes the fiscal multiplier large in recessions.

- The model is based on Curdia and Woodford’s extension (as we will discuss) of the NK model to a setting with lenders and borrowers.
- In CCDD, the costs of financial intermediation rise in recessions.
- Borrowers are impatient and increase their consumption (breaking Ricardian Equivalence) when their current income increases.

[A Financial Friction?](#)
Consumption Multipliers

Benchmark Experiment

Cumulative Multiplier (Borrowers’ consumption)

Cumulative Multiplier (Savers’ consumption)

Cumulative Multiplier (Aggregate Consumption)

Expansion Average Recession
Canzoneri, Collard, Dellas, and Diba (CCDD, 2011) develop a model in which a financial friction makes the fiscal multiplier large in recessions.

- The model is based on Curdia and Woodford’s extension (as we will discuss) of the NK model to a setting with lenders and borrowers.
- In CCDD, the costs of financial intermediation rise in recessions.
- Borrowers are impatient and increase their consumption (breaking Ricardian Equivalence) when their current income increases.
- The output multiplier is above 2 in a recession with a GDP gap of 2.5% using the solution to the non-linear model.
A Financial Friction?

- Canzoneri, Collard, Dellas, and Diba (CCDD, 2011) develop a model in which a financial friction makes the fiscal multiplier large in recessions.
 - the model is based on Curdia and Woodford’s extension (as we will discuss) of the NK model to a setting with lenders and borrowers.
 - in CCDD, the costs of financial intermediation rise in recessions.
 - borrowers are impatient and increase their consumption (breaking Ricardian Equivalence) when their current income increases.
 - the output multiplier is above 2 in a recession with a GDP gap of 2.5% using the solution to the non-linear model.

- It remains to be seen how these theoretical results and the empirical results of Auerbach and Gorodnichenko (2012), both based on non-linear models, affect future research.