Fiscal / Monetary Interactions: Liquid Bonds

Behzad Diba

Study Center Gerzensee

August 2011
Standard monetary models (and monetarist doctrine) draw a sharp distinction between the monetary base and other nominal liabilities of the public sector.
Standard monetary models (and monetarist doctrine) draw a sharp distinction between the monetary base and other nominal liabilities of the public sector.

By contrast, the FTPL emphasizes the role of the total (money plus bonds) nominal liabilities of the public sector.
Standard monetary models (and monetarist doctrine) draw a sharp distinction between the monetary base and other nominal liabilities of the public sector.

By contrast, the FTPL emphasizes the role of the total (money plus bonds) nominal liabilities of the public sector.

A third approach is to consider models in which government bonds are to some extent a substitute for money in providing liquidity (transactions) services.
Standard monetary models (and monetarist doctrine) draw a sharp distinction between the monetary base and other nominal liabilities of the public sector.

By contrast, the FTPL emphasizes the role of the total (money plus bonds) nominal liabilities of the public sector.

A third approach is to consider models in which government bonds are to some extent a substitute for money in providing liquidity (transactions) services.

This can make a big difference for determinacy results even if bonds are a very poor substitute for money.
Standard monetary models (and monetarist doctrine) draw a sharp distinction between the monetary base and other nominal liabilities of the public sector.

By contrast, the FTPL emphasizes the role of the total (money plus bonds) nominal liabilities of the public sector.

A third approach is to consider models in which government bonds are to some extent a substitute for money in providing liquidity (transactions) services.

- this can make a big difference for determinacy results even if bonds are a very poor substitute for money.
- it has other interesting implications if we think the liquidity services of bonds are significant (motivated by observations about US Treasury bills).
Canzoneri and Diba (2005) extends the simple CIA model by allowing households to spend a fraction of their current income if they hold government bonds as collateral.
Canzoneri and Diba (2005) extends the simple CIA model by allowing households to spend a fraction of their current income if they hold government bonds as collateral.

- the fraction of income can be arbitrarily small compared to the collateral requirement.

In this model, there is no fundamental difference between a monetary policy that sets the sequence of money supplies and one that sets a sequence for inflation plus the initial nominal interest rate. Either policy can be mapped into the other with a unique sequence of open-market operations.
Canzoneri and Diba (2005) extends the simple CIA model by allowing households to spend a fraction of their current income if they hold government bonds as collateral.

- The fraction of income can be arbitrarily small compared to the collateral requirement.
- Nonetheless, a policy regime with a pegged interest rate and a balanced budget (thus, no FTPL action) uniquely determines the price level (in a suitably bounded space).
Canzoneri and Diba (2005) extends the simple CIA model by allowing households to spend a fraction of their current income if they hold government bonds as collateral.

- The fraction of income can be arbitrarily small compared to the collateral requirement.
- Nonetheless, a policy regime with a pegged interest rate and a balanced budget (thus, no FTPL action) uniquely determines the price level (in a suitably bounded space).
- We don’t get the standard indeterminacy result of the CIA model in the limit, as the liquidity of bonds converges to zero.
Canzoneri and Diba (2005) extends the simple CIA model by allowing households to spend a fraction of their current income if they hold government bonds as collateral.

- The fraction of income can be arbitrarily small compared to the collateral requirement.
- Nonetheless, a policy regime with a pegged interest rate and a balanced budget (thus, no FTPL action) uniquely determines the price level (in a suitably bounded space).
- We don’t get the standard indeterminacy result of the CIA model in the limit, as the liquidity of bonds converges to zero.

In this model, there is no fundamental difference between a monetary policy that sets the sequence of money supplies and one that sets a sequence for inflation plus the initial nominal interest rate.
Canzoneri and Diba (2005) extends the simple CIA model by allowing households to spend a fraction of their current income if they hold government bonds as collateral.

- The fraction of income can be arbitrarily small compared to the collateral requirement.
- Nonetheless, a policy regime with a pegged interest rate and a balanced budget (thus, no FTPL action) uniquely determines the price level (in a suitably bounded space).
- We don’t get the standard indeterminacy result of the CIA model in the limit, as the liquidity of bonds converges to zero.

In this model, there is no fundamental difference between a monetary policy that sets the sequence of money supplies and one that sets a sequence for inflation plus the initial nominal interest rate.

- Either policy can be mapped into the other with a unique sequence of open-market operations.
This model produces unconventional results because
This model produces unconventional results because

- giving government bonds some role (no matter how small) leads to a departure from Ricardian Equivalence.

Canzoneri and Diba (2005) argue that "nominal indeterminacy" is a bit of a misnomer: any model with nominal indeterminacy has indeterminacy of real bonds. Indeterminacy of real bonds can go unnoticed because government bonds play no role in models with Ricardian Equivalence.
This model produces unconventional results because:

- giving government bonds some role (no matter how small) leads to a departure from Ricardian Equivalence;
- giving bonds some liquidity value allows monetary policy to affect the real interest rate on bonds (even in the steady-state equilibrium).
This model produces unconventional results because:

- giving government bonds some role (no matter how small) leads to a departure from Ricardian Equivalence;
- giving bonds some liquidity value allows monetary policy to affect the real interest rate on bonds (even in the steady-state equilibrium);

The conventional results (like nominal indeterminacy) are based on models in which Ricardian Equivalence holds exactly and monetary policy has no effect on the long-run real interest rate.

Canzoneri and Diba (2005) argue that "nominal indeterminacy" is a bit of a misnomer; any model with nominal indeterminacy has indeterminacy of real bonds, which can go unnoticed because government bonds play no role in models with Ricardian Equivalence.
This model produces unconventional results because

- giving government bonds some role (no matter how small) leads to a departure from Ricardian Equivalence
- giving bonds some liquidity value allows monetary policy to affect the real interest rate on bonds (even in the steady-state equilibrium)

The conventional results (like nominal indeterminacy) are based on models in which Ricardian Equivalence holds \textbf{exactly} and monetary policy has \textbf{no} effect on the long-run real interest rate

Canzoneri and Diba (2005) argue that "nominal indeterminacy" is a bit of a misnomer:
This model produces unconventional results because

- giving government bonds some role (no matter how small) leads to a departure from Ricardian Equivalence
- giving bonds some liquidity value allows monetary policy to affect the real interest rate on bonds (even in the steady-state equilibrium)

The conventional results (like nominal indeterminacy) are based on models in which Ricardian Equivalence holds exactly and monetary policy has no effect on the long-run real interest rate

Canzoneri and Diba (2005) argue that "nominal indeterminacy" is a bit of a misnomer:

- any model with nominal indeterminacy has indeterminacy of real bonds
This model produces unconventional results because:

- giving government bonds some role (no matter how small) leads to a departure from Ricardian Equivalence
- giving bonds some liquidity value allows monetary policy to affect the real interest rate on bonds (even in the steady-state equilibrium)

The conventional results (like nominal indeterminacy) are based on models in which Ricardian Equivalence holds exactly and monetary policy has no effect on the long-run real interest rate.

Canzoneri and Diba (2005) argue that "nominal indeterminacy" is a bit of a misnomer:

- any model with nominal indeterminacy has indeterminacy of real bonds
- indeterminacy of real bonds can go unnoticed because government bonds play no role in models with Ricardian Equivalence
Determinacy or Indeterminacy

The argument is based on the government budget constraint:

\[M_t + B_t = M_{t-1} + (1 + i_{t-1})B_{t-1} + P_t (G_t - \tau_t) \]
The argument is based on the government budget constraint:

\[M_t + B_t = M_{t-1} + (1 + i_{t-1})B_{t-1} + P_t (G_t - \tau_t) \]

Writing this as

\[\frac{M_t}{P_t} + \frac{B_t}{P_t} = \frac{M_{t-1}}{P_t} + \frac{(1 + i_{t-1})B_{t-1}}{P_t} + G_t - \tau_t, \]

indeterminacy of \(P_t \) (and the right-hand side) must correspond to indeterminacy of \(B_t / P_t \) (on the left-hand side), according to standard models in which real money balances are determinate.
The argument is based on the government budget constraint:

\[M_t + B_t = M_{t-1} + (1 + i_{t-1}) B_{t-1} + P_t (G_t - \tau_t) \]

Writing this as

\[\frac{M_t}{P_t} + \frac{B_t}{P_t} = \frac{M_{t-1} + (1 + i_{t-1}) B_{t-1}}{P_t} + G_t - \tau_t, \]

indeterminacy of \(P_t \) (and the right-hand side) must correspond to indeterminacy of \(B_t / P_t \) (on the left-hand side), according to standard models in which real money balances are determinate.

So, any model without Ricardian Equivalence must exhibit either nominal determinacy or real indeterminacy.
Canzoneri, Cumby, Diba, and López-Salido (CCDL, 2011) develop a model suitable for calibration, in which holding money and bonds reduces transactions costs.
Canzoneri, Cumby, Diba, and López-Salido (CCDL, 2011) develop a model suitable for calibration, in which holding money and bonds reduces transactions costs.

The representative household maximizes

\[E_t \sum_{j=0}^{\infty} \beta^j [u(c_{t+j})] , \]

(with \(0 < \beta < 1\), \(u'(.) > 0\), and \(u''(.) < 0\)) subject to the budget constraint

\[B_t + M_t + (1 + \theta_t)P_t c_t + P_t \tau_t = P_t y_t + M_{t-1} + (1 + i_{t-1})B_{t-1} \]

where \(\theta\) represents transactions costs per unit of consumption.
Transactions Costs

Let $m_t = M_t / P_t$, $b_t = B_t / P_t$, define a velocity measure

$$v_t = \frac{c_t}{m_t^\alpha b_t^{1-\alpha}}, \ 0 < \alpha < 1$$

and set

$$\theta_t = A \left[v_t - v^* \right]^2, \ A > 0, \ v^* > 0$$

for $v_t > v^*$, and $\theta_t = 0$ for $v_t \leq v^*$
Transactions Costs

Let \(m_t = M_t / P_t \), \(b_t = B_t / P_t \), define a velocity measure

\[
\nu_t = \frac{c_t}{m_t^\alpha b_t^{1-\alpha}}, \quad 0 < \alpha < 1
\]

and set

\[
\theta_t = \frac{A}{\nu_t} [\nu_t - \nu^*]^2, \quad A > 0, \quad \nu^* > 0
\]

for \(\nu_t > \nu^* \), and \(\theta_t = 0 \) for \(\nu_t \leq \nu^* \)

Set the parameters (i.e., calibrate the model) to match US data on money and bond holdings, T-bill rates, inflation, etc.
The rest of this model is a standard New Keynesian model calibrated to US data.
The rest of this model is a standard New Keynesian model calibrated to US data.

To consider the change in US monetary policy (from "passive" to "active") in 1979, we consider two calibrations to data before and after 1980.
The rest of this model is a standard New Keynesian model calibrated to US data.

To consider the change in US monetary policy (from "passive" to "active") in 1979, we consider two calibrations to data before and after 1980.

The model suggests estimated policies put the US economy in the determinacy region.
The rest of this model is a standard New Keynesian model calibrated to US data.

To consider the change in US monetary policy (from "passive" to "active") in 1979, we consider two calibrations to data before and after 1980.

The model suggests estimated policies put the US economy in the determinacy region.

So, we don’t need "sunspots" or the FTPL to explain the 1970s.
The rest of this model is a standard New Keynesian model calibrated to US data.

To consider the change in US monetary policy (from "passive" to "active") in 1979, we consider two calibrations to data before and after 1980.

The model suggests estimated policies put the US economy in the determinacy region.

So, we don’t need "sunspots" or the FTPL to explain the 1970s.

But we find a large welfare cost associated with the monetary policy of the 1970s (not satisfying the Taylor Principle).
The rest of this model is a standard New Keynesian model calibrated to US data.

To consider the change in US monetary policy (from "passive" to "active") in 1979, we consider two calibrations to data before and after 1980.

The model suggests estimated policies put the US economy in the determinacy region.

So, we don't need "sunspots" or the FTPL to explain the 1970s.

But we find a large welfare cost associated with the monetary policy of the 1970s (not satisfying the Taylor Principle).

In this setup, there is no policy coordination issue to address about the change in US monetary policy in the 1980s.
As we discussed, Bohn (2008) finds that in historical US data the real return on public debt has been below the growth rate of real GDP for long periods of time.
As we discussed, Bohn (2008) finds that in historical US data the real return on public debt has been below the growth rate of real GDP for long periods of time. This poses a challenge to standard asset pricing approaches (like CCAPM); CCDL attribute it to liquidity services of bonds. The implications for determinacy (and similar aspects of the structure of monetary models) may be of interest even if the liquidity services of bonds are small, but the budgetary implications are only relevant if the transactions services of government bonds are substantial.
As we discussed, Bohn (2008) finds that in historical US data the real return on public debt has been below the growth rate of real GDP for long periods of time:

- this poses a challenge to standard asset pricing approaches (like CCAPM); CCDL attribute it to liquidity services of bonds
- it questions the standard presumption that a sustainable fiscal policy must, on average, run a primary surplus
As we discussed, Bohn (2008) finds that in historical US data the real return on public debt has been below the growth rate of real GDP for long periods of time:

- this poses a challenge to standard asset pricing approaches (like CCAPM); CCDL attribute it to liquidity services of bonds.
- it questions the standard presumption that a sustainable fiscal policy must, on average, run a primary surplus.
- and Bohn (2008) also found that the US government had a primary deficit on average; the low return on debt (compared to GDP growth) was what prevented the debt-to-GDP ratio from exploding.
As we discussed, Bohn (2008) finds that in historical US data the real return on public debt has been below the growth rate of real GDP for long periods of time.

- This poses a challenge to standard asset pricing approaches (like CCAPM); CCDL attribute it to liquidity services of bonds.
- It questions the standard presumption that a sustainable fiscal policy must, on average, run a primary surplus.
- And Bohn (2008) also found that the US government had a primary deficit on average; the low return on debt (compared to GDP growth) was what prevented the debt-to-GDP ratio from exploding.
- The US government, in effect, collects "seigniorage" by issuing liquid bonds, as well as money.
As we discussed, Bohn (2008) finds that in historical US data the real return on public debt has been below the growth rate of real GDP for long periods of time:

- this poses a challenge to standard asset pricing approaches (like CCAPM); CCDL attribute it to liquidity services of bonds.
- it questions the standard presumption that a sustainable fiscal policy must, on average, run a primary surplus.
- and Bohn (2008) also found that the US government had a primary deficit on average; the low return on debt (compared to GDP growth) was what prevented the debt-to-GDP ratio from exploding.
- the US government, in effect, collects "seigniorage" by issuing liquid bonds, as well as money.

The implications for determinacy (and similar aspects of the structure of monetary models) may be of interest even if the liquidity services of bonds are small, but the budgetary implications are only relevant if the transactions services of government bonds are substantial.
Krishnamurthy and Vissing-Jorgensen (2012) present empirical evidence on the transactions services of US Treasury debt. They argue that US Treasury debt (like currency) provides a "convenience" yield that reflects both the liquidity and safety attributes of government debt. Their estimate of this convenience yield averages 73 basis points per annum over 1926-2008. They find that bond seigniorage has averaged about 0.25% of US GDP per annum, which is about the same as estimates of US seigniorage from money creation.

Krishnamurthy and Vissing-Jorgensen (2012) also find that the yield spread between Aaa rated corporate bonds relative to US Treasuries is inversely related to the US debt-to-GDP ratio. This argues in favor of models with a bond demand function, much like a money demand function. They propose a model with bonds in the utility function of the representative household.
Krishnamurthy and Vissing-Jorgensen (2012) present empirical evidence on the transactions services of US Treasury debt. They argue that US Treasury debt (like currency) provides a "convenience" yield that reflects both the liquidity and safety attributes of government debt.
Krishnamurthy and Vissing-Jorgensen (2012) present empirical evidence on the transactions services of US Treasury debt. They argue that US Treasury debt (like currency) provides a "convenience" yield that reflects both the liquidity and safety attributes of government debt. Their estimate of this convenience yield averages 73 basis points per annum over 1926-2008. They also find that bond seigniorage has averaged about 0.25% of US GDP per annum, which is about the same as estimates of US seigniorage from money creation. Krishnamurthy and Vissing-Jorgensen (2012) also find that the yield spread between Aaa rated corporate bonds relative to US Treasuries is inversely related to the US debt-to-GDP ratio. This argues in favor of models with a bond demand function, much like a money demand function. They propose a model with bonds in the utility function of the representative household.
Krishnamurthy and Vissing-Jorgensen (2012) present empirical evidence on the transactions services of US Treasury debt. They argue that US Treasury debt (like currency) provides a "convenience" yield that reflects both the liquidity and safety attributes of government debt.

- Their estimate of this convenience yield averages 73 basis points per annum over 1926-2008.
- They find that bond seigniorage has averaged about 0.25% of US GDP per annum, which is about the same as estimates of US seigniorage from money creation.
Krishnamurthy and Vissing-Jorgensen (2012) present empirical evidence on the transactions services of US Treasury debt. They argue that US Treasury debt (like currency) provides a "convenience" yield that reflects both the liquidity and safety attributes of government debt.

- Their estimate of this convenience yield averages 73 basis points per annum over 1926-2008.
- They find that bond seigniorage has averaged about 0.25% of US GDP per annum, which is about the same as estimates of US seigniorage from money creation.

Krishnamurthy and Vissing-Jorgensen (2012) also find that the yield spread between Aaa rated corporate bonds relative to US Treasuries is inversely related to the US debt-to-GDP ratio.

(Institute) Fiscal /Monetary Interactions: Liquid Bonds August 2011 10 / 11
The figure plots the Aaa-Treasury corporate bond spread (y-axis) against the Debt-to-GDP ratio (x-axis) based on annual observations from 1919 to 2008. The corporate bond spread is the difference between the percentage yield on Moody’s Aaa long maturity bond index and the percentage yield on long maturity Treasury bonds.
Krishnamurthy and Vissing-Jorgensen (2012) present empirical evidence on the transactions services of US Treasury debt. They argue that US Treasury debt (like currency) provides a "convenience" yield that reflects both the liquidity and safety attributes of government debt.

- Their estimate of this convenience yield averages 73 basis points per annum over 1926-2008.
- They find that bond seigniorage has averaged about 0.25% of US GDP per annum, which is about the same as estimates of US seigniorage from money creation.

Krishnamurthy and Vissing-Jorgensen (2012) also find that the yield spread between Aaa rated corporate bonds relative to US Treasuries is inversely related to the US debt-to-GDP ratio.

- This argues in favor of models with a bond demand function, much like a money demand function.
Krishnamurthy and Vissing-Jorgensen (2012) present empirical evidence on the transactions services of US Treasury debt. They argue that US Treasury debt (like currency) provides a "convenience" yield that reflects both the liquidity and safety attributes of government debt.

- Their estimate of this convenience yield averages 73 basis points per annum over 1926-2008.
- They find that bond seigniorage has averaged about 0.25% of US GDP per annum, which is about the same as estimates of US seigniorage from money creation.

Krishnamurthy and Vissing-Jorgensen (2012) also find that the yield spread between Aaa rated corporate bonds relative to US Treasuries is inversely related to the US debt-to-GDP ratio.

- This argues in favor of models with a bond demand function, much like a money demand function.
- They propose a model with bonds in the utility function of the representative household.
The models discussed above [Canzoneri and Diba (2005); Canzoneri, Cumby, Diba, and López-Salido (2011); Krishnamurthy and Vissing-Jorgensen (2012)] and a number of other recent contributions resurrect the portfolio-balance models of an earlier generation (including the pioneering work of James Tobin).
The models discussed above [Canzoneri and Diba (2005); Canzoneri, Cumby, Diba, and López-Salido (2011); Krishnamurthy and Vissing-Jorgensen (2012)] and a number of other recent contributions resurrect the portfolio-balance models of an earlier generation (including the pioneering work of James Tobin)

- asset supplies affect asset returns in these models
The models discussed above [Canzoneri and Diba (2005); Canzoneri, Cumby, Diba, and López-Salido (2011); Krishnamurthy and Vissing-Jorgensen (2012)] and a number of other recent contributions resurrect the portfolio-balance models of an earlier generation (including the pioneering work of James Tobin)

- asset supplies affect asset returns in these models

To the extent that portfolio-balance effects are significant, they have implications for monetary models that largely remain to be explored
The models discussed above [Canzoneri and Diba (2005); Canzoneri, Cumby, Diba, and López-Salido (2011); Krishnamurthy and Vissing-Jorgensen (2012)] and a number of other recent contributions resurrect the portfolio-balance models of an earlier generation (including the pioneering work of James Tobin)

- asset supplies affect asset returns in these models

To the extent that portfolio-balance effects are significant, they have implications for monetary models that largely remain to be explored

- bonds issued by different countries need not be perfect substitutes, and there may be a case for sterilized interventions
The models discussed above [Canzoneri and Diba (2005); Canzoneri, Cumby, Diba, and López-Salido (2011); Krishnamurthy and Vissing-Jorgensen (2012)] and a number of other recent contributions resurrect the portfolio-balance models of an earlier generation (including the pioneering work of James Tobin)

- asset supplies affect asset returns in these models

To the extent that portfolio-balance effects are significant, they have implications for monetary models that largely remain to be explored

- bonds issued by different countries need not be perfect substitutes, and there may be a case for sterilized interventions
- changes in the maturity structure of the public debt (including "operation-twist" type transactions of central banks) may matter in ways that standard models don’t capture
The models discussed above [Canzoneri and Diba (2005); Canzoneri, Cumby, Diba, and López-Salido (2011); Krishnamurthy and Vissing-Jorgensen (2012)] and a number of other recent contributions resurrect the portfolio-balance models of an earlier generation (including the pioneering work of James Tobin)

- asset supplies affect asset returns in these models

To the extent that portfolio-balance effects are significant, they have implications for monetary models that largely remain to be explored

- bonds issued by different countries need not be perfect substitutes, and there may be a case for sterilized interventions
- changes in the maturity structure of the public debt (including "operation-twist" type transactions of central banks) may matter in ways that standard models don’t capture
- standard models that exhibit Ricardian Equivalence may be missing an important element for policy applications