Monetary and Fiscal Policies: Sustainable Fiscal Policies

Behzad Diba

Georgetown University

May 2013
Empirical assessments of the fiscal stance are complicated by the fact that we don’t have a precise definition of fiscal sustainability.
Empirical assessments of the fiscal stance are complicated by the fact that we don’t have a precise definition of fiscal sustainability. For example, the debt-to-GDP ratio may grow in a particular sample, but this does not mean it will continue to grow in the future.
Empirical assessments of the fiscal stance are complicated by the fact that we don’t have a precise definition of fiscal sustainability.

For example, the debt-to-GDP ratio may grow in a particular sample, but this does not mean it will continue to grow in the future.

Or, the ratio may be stable, while (say) the effects of an aging population and unfunded fiscal obligations pose a future challenge.
Empirical assessments of the fiscal stance are complicated by the fact that we don’t have a precise definition of fiscal sustainability. For example, the debt-to-GDP ratio may grow in a particular sample, but this does not mean it will continue to grow in the future. Or, the ratio may be stable, while (say) the effects of an aging population and unfunded fiscal obligations pose a future challenge. Much of the existing empirical research has focused on developing econometric tests of whether or not the government PVBC is satisfied, given the trends we can detect from data.
Empirical assessments of the fiscal stance are complicated by the fact that we don’t have a precise definition of fiscal sustainability.

For example, the debt-to-GDP ratio may grow in a particular sample, but this does not mean it will continue to grow in the future.

Or, the ratio may be stable, while (say) the effects of an aging population and unfunded fiscal obligations pose a future challenge.

Much of the existing empirical research has focused on developing econometric tests of whether or not the government PVBC is satisfied, given the trends we can detect from data.

A more useful approach may provide measures of the fiscal outlook without attempting a formal test for sustainability.
"Testing" for the PVBC?

- In retrospect, earlier attempts to develop econometric tests of the PVBC (based on stationarity and co-integration tests) don’t seem very informative.
In retrospect, earlier attempts to develop econometric tests of the PVBC (based on stationarity and co-integration tests) don’t seem very informative.

The tests amount to asking if the transversality condition of lenders will be satisfied as time tends to infinity; this is not a question in the usual realm of statistical inference.
In retrospect, earlier attempts to develop econometric tests of the PVBC (based on stationarity and co-integration tests) don’t seem very informative.

1. The tests amount to asking if the transversality condition of lenders will be satisfied as time tends to infinity; this is not a question in the usual realm of statistical inference.

2. We now understand (following the FTPL) that the "PVBC" is an equilibrium condition; there is no formal theoretical motivation for an "alternative hypothesis" that the PVBC does not hold.
"Testing" for the PVBC?

- In retrospect, earlier attempts to develop econometric tests of the PVBC (based on stationarity and co-integration tests) don’t seem very informative.

1. The tests amount to asking if the transversality condition of lenders will be satisfied as time tends to infinity; this is not a question in the usual realm of statistical inference.

2. We now understand (following the FTPL) that the "PVBC" is an equilibrium condition; there is no formal theoretical motivation for an "alternative hypothesis" that the PVBC does not hold.

3. It is not clear what satisfying the PVBC has to do with fiscal sustainability, as the following example illustrates.
An Example

As discussed in CCD (2010), the government's PVBC is derived using the transversality condition (TC) of households (lenders).

\[
\lim_{n \to +\infty} \beta^n E_t L_t + n P_t + n C_t = 0,
\]

stating that the ratio of nominal public debt to nominal consumption, discounted at the lenders' rate of time preference, is expected to converge to zero; standard calibrations set \(\beta \approx 0.99 \) per quarter. The ratio of debt to aggregate consumption can grow exponentially (at any rate less than 4% per annum) without violating the PVBC but most of us would probably consider such a fiscal policy, making the debt-to-GDP ratio grow forever, unsustainable.

In the model (with simplifying features like infinite horizons, a lump-sum tax, etc.), an equilibrium can involve an ever-growing debt-to-GDP ratio, but this implication is not robust to changes in the model (like considering overlapping generations of households).
As discussed in CCD (2010), the government’s PVBC is derived using the transversality condition (TC) of households (lenders).

In a benchmark model with logarithmic utility, the TC implies

$$
\lim_{n \to +\infty} \beta^n E_t \left\{ \frac{L_{t+n}}{P_{t+n} C_{t+n}} \right\} = 0,
$$

stating that the ratio of nominal public debt to nominal consumption, discounted at the lenders’ rate of time preference, is expected to converge to zero; standard calibrations set $\beta = 0.99$ per quarter.
An Example

- As discussed in CCD (2010), the government’s PVBC is derived using the transversality condition (TC) of households (lenders).
- In a benchmark model with logarithmic utility, the TC implies

\[
\lim_{n \to +\infty} \beta^n E_t \left\{ \frac{L_{t+n}}{P_{t+n} C_{t+n}} \right\} = 0,
\]

stating that the ratio of nominal public debt to nominal consumption, discounted at the lenders’ rate of time preference, is expected to converge to zero; standard calibrations set \(\beta = 0.99 \) per quarter.
- The ratio of debt to aggregate consumption can grow exponentially (at any rate less than 4% per annum) without violating the PVBC.
As discussed in CCD (2010), the government's PVBC is derived using the transversality condition (TC) of households (lenders). In a benchmark model with logarithmic utility, the TC implies

\[
\lim_{n \to +\infty} \beta^n E_t \left\{ \frac{L_{t+n}}{P_{t+n} C_{t+n}} \right\} = 0,
\]

stating that the ratio of nominal public debt to nominal consumption, discounted at the lenders' rate of time preference, is expected to converge to zero; standard calibrations set \(\beta = 0.99 \) per quarter.

- the ratio of debt to aggregate consumption can grow exponentially (at any rate less than 4% per annum) without violating the PVBC.
- but most of us would probably consider such a fiscal policy, making the debt-to-GDP ratio grow forever, unsustainable.
As discussed in CCD (2010), the government’s PVBC is derived using the transversality condition (TC) of households (lenders). In a benchmark model with logarithmic utility, the TC implies

\[
\lim_{n \to +\infty} \beta^n E_t \left\{ \frac{L_{t+n}}{P_{t+n} C_{t+n}} \right\} = 0 ,
\]

stating that the ratio of nominal public debt to nominal consumption, discounted at the lenders’ rate of time preference, is expected to converge to zero; standard calibrations set \(\beta = 0.99 \) per quarter.

- the ratio of debt to aggregate consumption can grow exponentially (at any rate less than 4% per annum) without violating the PVBC
- but most of us would probably consider such a fiscal policy, making the debt-to-GDP ratio grow forever, unsustainable

In the model (with simplifying features like infinite horizons, a lump-sum tax, etc.), an equilibrium can involve an ever growing debt-to-GDP ratio, but this implication is not robust to changes in the model (like considering overlapping generations of households).
Dynamics of Debt/GDP

Let b_t denote the real value of government bonds outstanding at time t, and let r_t denote the ex-post real return on bonds, debt dynamics are governed by

$$b_t = (1 + r_t) b_{t-1} + G_t - T_t,$$

where T_t is tax revenues inclusive of seigniorage.
Dynamics of Debt/GDP

Let b_t denote the real value of government bonds outstanding at time t, and let r_t denote the ex-post real return on bonds, debt dynamics are governed by

$$ b_t = (1 + r_t) b_{t-1} + G_t - T_t, $$

where T_t is tax revenues inclusive of seigniorage.

The evolution of the debt-to-GDP ratio is governed by

$$ \frac{b_t}{Y_t} = (1 + \rho_t) \frac{b_{t-1}}{Y_{t-1}} + \frac{G_t - T_t}{Y_t}, \quad (1) $$

with

$$ 1 + \rho_t = (1 + r_t) \left(\frac{Y_{t-1}}{Y_t} \right) $$
Steady-state Equilibrium

- Standard calibrations used for policy analysis assume, and standard asset pricing models imply, that the real return on debt exceeds the real growth rate in the long run (on the balanced growth path).
Steady-state Equilibrium

- Standard calibrations used for policy analysis assume, and standard asset pricing models imply, that the real return on debt exceeds the real growth rate in the long run (on the balanced growth path)
 - for example, the "benchmark scenarios" of IMF (2010) assume the real interest rate exceeds the real growth rate by one percentage point per annum

\[\rho_b Y = T_G Y, \]

which implies that a government with positive debt must run a primary surplus (inclusive of seigniorage) that services the debt and keeps the debt-to-GDP ratio constant
Steady-state Equilibrium

- Standard calibrations used for policy analysis assume, and standard asset pricing models imply, that the real return on debt exceeds the real growth rate in the long run (on the balanced growth path)
 - for example, the "benchmark scenarios" of IMF (2010) assume the real interest rate exceeds the real growth rate by one percentage point per annum
 - and, as a theoretical benchmark, the CCAPM with logarithmic utility implies that the steady-state real rate equals the subjective rate of time preference plus the growth rate of per-capita real consumption
Steady-state Equilibrium

- Standard calibrations used for policy analysis assume, and standard asset pricing models imply, that the real return on debt exceeds the real growth rate in the long run (on the balanced growth path).
 - for example, the "benchmark scenarios" of IMF (2010) assume the real interest rate exceeds the real growth rate by one percentage point per annum
 - and, as a theoretical benchmark, the CCAPM with logarithmic utility implies that the steady-state real rate equals the subjective rate of time preference plus the growth rate of per-capita real consumption.

- With \(\rho > 0 \), the steady-state version of (1) is

\[
\rho \left(\frac{b}{Y} \right) = \frac{T - G}{Y},
\]

which implies that a government with positive debt must run a primary surplus (inclusive of seigniorage) that services the debt and keeps the debt-to-GDP ratio constant.
We can log-linearize (1) near a steady state (with $\rho_t = \rho$, etc.) to get

$$\log \left(\frac{b_t}{Y_t} \right) = \Phi + \phi_g \log \left(\frac{G_t}{Y_t} \right) - \phi_\tau \log \left(\frac{T_t}{Y_t} \right) + \phi_\rho \log \left(1 + \rho_t \right)$$

$$+ (1 + \rho) \log \left(\frac{b_{t-1}}{Y_{t-1}} \right)$$

with coefficients $\Phi, \phi_g > 0, \phi_\tau > 0$, and $\phi_\rho > 0$ that depend only on the point of approximation.
Log-linear Approximation

- We can log-linearize (1) near a steady state (with $\rho_t = \rho$, etc.) to get

$$
\log \left(\frac{b_t}{Y_t} \right) = \Phi + \phi_g \log \left(\frac{G_t}{Y_t} \right) - \phi_\tau \log \left(\frac{T_t}{Y_t} \right) + \phi_\rho \log \left(1 + \rho_t \right)
$$

$$
+ (1 + \rho) \log \left(\frac{b_{t-1}}{Y_{t-1}} \right)
$$

with coefficients $\Phi, \phi_g > 0, \phi_\tau > 0, \text{ and } \phi_\rho > 0$ that depend only on the point of approximation.

- Iterating on this linear equation, Polito and Wickens (2012) analyze the change in the debt-to-GDP ratio, over finite horizons.
The log-linear relationship links the growth in the debt-to GDP ratio to components reflecting revenues, expenditures, and the discount rate (ρ_t).
The log-linear relationship links the growth in the debt-to GDP ratio to components reflecting revenues, expenditures, and the discount rate (ρ_t).

It is instructive to plot these components and interpret historical changes in the debt-to-GDP ratio, as Polito and Wickens (2012) do.
Figure 1: The United States: data plot

Figure 2: The United Kingdom: data plot
Figure 3: Germany: data plot

Figure 4: Greece: data plot
Figure 1: The United States: data plot

Figure 2: The United Kingdom: data plot
Figure 3: Germany: data plot

Figure 4: Greece: data plot
The log-linear relationship links the growth in the debt-to GDP ratio to components reflecting revenues, expenditures, and the discount rate (ρ_t).

It is instructive to plot these components and interpret historical changes in the debt-to-GDP ratio, as Polito and Wickens (2012) do.

Polito and Wickens (2012) also estimate a VAR involving the fiscal variables, inflation, short-term and long-term interest rates, and the GDP gap.
The log-linear relationship links the growth in the debt-to GDP ratio to components reflecting revenues, expenditures, and the discount rate \(\rho_t \).

It is instructive to plot these components and interpret historical changes in the debt-to-GDP ratio, as Polito and Wickens (2012) do.

Polito and Wickens (2012) also estimate a VAR involving the fiscal variables, inflation, short-term and long-term interest rates, and the GDP gap.

They use the VAR forecasts to predict / project changes in the debt-to-GDP ratio.
The log-linear relationship links the growth in the debt-to-GDP ratio to components reflecting revenues, expenditures, and the discount rate \((\rho_t)\).

It is instructive to plot these components and interpret historical changes in the debt-to-GDP ratio, as Polito and Wickens (2012) do.

Polito and Wickens (2012) also estimate a VAR involving the fiscal variables, inflation, short-term and long-term interest rates, and the GDP gap.

They use the VAR forecasts to predict / project changes in the debt-to-GDP ratio.

The details serve to illustrate the econometric approach but are not of direct interest to us, because the forecast horizons are short.
The log-linear relationship links the growth in the debt-to-GDP ratio to components reflecting revenues, expenditures, and the discount rate (ρ_t).

It is instructive to plot these components and interpret historical changes in the debt-to-GDP ratio, as Polito and Wickens (2012) do.

Polito and Wickens (2012) also estimate a VAR involving the fiscal variables, inflation, short-term and long-term interest rates, and the GDP gap.

They use the VAR forecasts to predict / project changes in the debt-to-GDP ratio.

- the details serve to illustrate the econometric approach but are not of direct interest to us, because the forecast horizons are short.
- we may speculate about some correlations in the data.
change in the debt-GDP ratio is stronger.

Table 1: Correlation coefficients between the level and the change in the debt-GDP ratio and the variables in \(z_t \) for the US, the UK, Germany and Greece, 1970-2009.

<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th>UK</th>
<th>GER</th>
<th>GRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A: b_t/y_t)</td>
<td>-0.2</td>
<td>-0.5</td>
<td>-0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>(\pi_t)</td>
<td>-0.8</td>
<td>0.0</td>
<td>-0.9</td>
<td>-0.6</td>
</tr>
<tr>
<td>(g_t/y_t)</td>
<td>0.9</td>
<td>0.5</td>
<td>0.4</td>
<td>1.0</td>
</tr>
<tr>
<td>(v_t/y_t)</td>
<td>0.3</td>
<td>0.2</td>
<td>0.4</td>
<td>0.9</td>
</tr>
<tr>
<td>(b_t/y_t)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>(IRL_t)</td>
<td>-0.6</td>
<td>-0.2</td>
<td>-0.7</td>
<td>-0.3</td>
</tr>
<tr>
<td>(IRS_t)</td>
<td>-0.7</td>
<td>-0.4</td>
<td>-0.7</td>
<td>-0.3</td>
</tr>
<tr>
<td>(\rho_t)</td>
<td>0.5</td>
<td>0.4</td>
<td>0.2</td>
<td>-0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th>UK</th>
<th>GER</th>
<th>GRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B: \Delta b_t/y_t)</td>
<td>-0.7</td>
<td>-0.7</td>
<td>-0.4</td>
<td>-0.1</td>
</tr>
<tr>
<td>(\pi_t)</td>
<td>-0.2</td>
<td>-0.3</td>
<td>0.1</td>
<td>0.6</td>
</tr>
<tr>
<td>(g_t/y_t)</td>
<td>0.7</td>
<td>0.5</td>
<td>0.6</td>
<td>-0.4</td>
</tr>
<tr>
<td>(v_t/y_t)</td>
<td>-0.4</td>
<td>-0.1</td>
<td>0.1</td>
<td>-0.6</td>
</tr>
<tr>
<td>(b_t/y_t)</td>
<td>0.4</td>
<td>0.4</td>
<td>0.0</td>
<td>-0.6</td>
</tr>
<tr>
<td>(IRL_t)</td>
<td>0.0</td>
<td>-0.4</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>(IRS_t)</td>
<td>-0.3</td>
<td>-0.5</td>
<td>-0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>(\rho_t)</td>
<td>0.8</td>
<td>0.8</td>
<td>0.3</td>
<td>0.5</td>
</tr>
</tbody>
</table>

5.1.2 Econometric tests of fiscal sustainability

For the purposes of comparison, and before computing the index, we carry out some of the econometric tests of fiscal sustainability discussed earlier. Table 2 reports the Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) test statistics for the ratios of debt and the deficit to GDP under various assumptions about the discount rate.

The Hamilton and Flavin test described in equation (13) is based on the stationarity of the undiscounted processes \(\frac{d}{y_t} \) and \(\frac{b}{y_t} \); if they are not stationary then the fiscal stance is said to be unsustainable. They argue - and this was shown earlier - that, under the assumption of a positive constant interest rate, the discounted sum of future deficits is stationary if the undiscounted process \(\frac{d}{y_t} \) is stationary. Panel A gives the ADF and PP tests statistics for the undiscounted series \(b/y_t \) and \(d/y_t \). The hypothesis of a unit root cannot be rejected for the debt-GDP ratios at any conventional significance level, but the outcomes for the undiscounted processes \(d/y_t \) depend upon the choice of unit root test and on the significance level. Although the results for the debt-GDP ratio suggest that the fiscal stance is not sustainable, those for the deficit-GDP ratio create some ambiguity.

The test is repeated in Panel B using discounted series for \(b_t/y_t \) and \(d_t/y_t \) where the discount rate is a constant equal to the sample average of \(\rho_t \). In terms of the earlier discussion, these are tests of the transversality condition and the PVBC, equations (8) and (9) respectively. The results are now even more ambiguous. Using the ADF test the null hypothesis of a unit root is not rejected for any country but using the PP test the outcome is marginal. \(d_t/y_t \) appears to be non-stationary except for Germany. In Panel C the tests are repeated again only this time under the assumption of a time-varying discount rate. This
Limitations

- The VAR approach cannot forecast fiscal stress caused by factors that are not reflected in past data.
Limitations

- The VAR approach cannot forecast fiscal stress caused by factors that are not reflected in past data
 - as illustrated by our earlier discussion of aging populations and unfunded liabilities

- Calculating a reliable measure of the relevant discount rate ρ_t is complicated by data limitations

- Bohn's (2008) analysis of historical US data motivates more work on measuring ρ_t
- Hall and Sargent (2010) present a measurement methodology; they also compare their measure of ρ_t to simple measures that are commonly used and conclude that the simple measures can be quite misleading
The VAR approach cannot forecast fiscal stress caused by factors that are not reflected in past data

- as illustrated by our earlier discussion of aging populations and unfunded liabilities
- expert projection—like the CBO projections, and their extensions, discussed in Auerbach (2011)—may be used in conjunction with the more objective statistical approach

Calculating a reliable measure of the relevant discount rate ρ_t is complicated by data limitations. Bohn’s (2008) analysis of historical US data motivates more work on measuring ρ_t. Hall and Sargent (2010) present a measurement methodology; they also compare their measure of ρ_t to simple measures that are commonly used and conclude that the simple measures can be quite misleading.
Limitations

- The VAR approach cannot forecast fiscal stress caused by factors that are not reflected in past data
 - as illustrated by our earlier discussion of aging populations and unfunded liabilities
 - expert projection—like the CBO projections, and their extensions, discussed in Auerbach (2011)—may be used in conjunction with the more objective statistical approach

- Calculating a reliable measure of the relevant discount rate ρ_t is complicated by data limitations
Limitations

- The VAR approach cannot forecast fiscal stress caused by factors that are not reflected in past data
 - as illustrated by our earlier discussion of aging populations and unfunded liabilities
 - expert projection—like the CBO projections, and their extensions, discussed in Auerbach (2011)—may be used in conjunction with the more objective statistical approach
- Calculating a reliable measure of the relevant discount rate ρ_t is complicated by data limitations
 - Bohn’s (2008) analysis of historical US data motivates more work on measuring ρ
Limitations

- The VAR approach cannot forecast fiscal stress caused by factors that are not reflected in past data
 - as illustrated by our earlier discussion of aging populations and unfunded liabilities
 - expert projection—like the CBO projections, and their extensions, discussed in Auerbach (2011)—may be used in conjunction with the more objective statistical approach

- Calculating a reliable measure of the relevant discount rate ρ_t is complicated by data limitations
 - Bohn’s (2008) analysis of historical US data motivates more work on measuring ρ
 - Hall and Sargent (2010) present a measurement methodology; they also compare their measure of ρ_t to simple measures that are commonly used and conclude that the simple measures can be quite misleading
Auerbach (2011) illustrates the approach used in his work with William Gale and summarizes some results.
Auerbach (2011) illustrates the approach used in his work with William Gale and summarizes some results:

- The fiscal gap over a horizon from the current date t to a terminal date T measures the required increase in the primary surplus (relative to current projections) that would be needed to maintain debt/GDP at its current value.

Auerbach and Gale (2011) estimated a fiscal gap in the 3 to 6 percent range through 2060 for the US federal government. The estimates assumed an interest rate exceeding the GDP growth rate by one percentage point. Auerbach and Gale (2011) noted that the fiscal gaps can be significantly larger (as large as 10% of GDP) if interest rates rise relative to GDP growth or the horizon is extended beyond 2060.

Auerbach (2011) reports fiscal gaps for other advanced economies.
Calculating Fiscal Gaps

The evolution of debt implies

\[
\frac{B_T}{(1 + r)^{T-t}} = B_t + \sum_{s=t+1}^{T} \frac{D_s}{(1 + r)^{s-t}}
\]

where \(B\) is the stock of government bonds, \(D\) is the primary deficit, and \(r\) is the interest rate (assumed to be constant for simplicity).

The fiscal gap \(\Delta\) is the annual deficit reduction that keeps the debt-to-GDP ratio at the terminal date \(T\) equal to the current value at \(t\):

\[
\frac{B_T}{Y_T} = \frac{B_t}{Y_t}
\]

So, \(\Delta\) satisfies

\[
\frac{B_t Y_T}{Y_t (1 + r)^{T-t}} = B_t + \sum_{s=t+1}^{T} \frac{D_s - \Delta Y_s}{(1 + r)^{s-t}}
\]

which implies

\[
\Delta = \frac{B_t - B_t (Y_T/Y_t) (1 + r)^{T-t} + \sum_{s=t+1}^{T} (1 + r)^{t-s} D_s}{\sum_{s=t+1}^{T} (1 + r)^{t-s} Y_s}
\]
Auerbach (2011) illustrates the approach used in his work with William Gale and summarizes some results:

- The fiscal gap over a horizon from the current date \(t \) to a terminal date \(T \) measures the required increase in the primary surplus (relative to current projections) that would be needed to maintain debt/GDP at its current value.
- Auerbach and Gale (2011) estimated a fiscal gap in the 3 to 6 percent range through 2060 for the US federal-government.
- The estimates assumed an interest rate exceeding the GDP growth rate by one percentage point.
- Auerbach and Gale (2011) noted that the fiscal gaps can be significantly larger (as large as 10% of GDP) if interest rates rise relative to GDP growth or the horizon is extended beyond 2060.
Auerbach (2011) illustrates the approach used in his work with William Gale and summarizes some results:

- The fiscal gap over a horizon from the current date t to a terminal date T measures the required increase in the primary surplus (relative to current projections) that would be needed to maintain debt/GDP at its current value.
- Auerbach and Gale (2011) estimated a fiscal gap in the 3 to 6 percent range through 2060 for the US federal-government.
- The estimates assumed an interest rate exceeding the GDP growth rate by one percentage point.

Institute

Monetary and Fiscal Policies: Sustainable Fiscal Policies

May 2013
Auerbach (2011) illustrates the approach used in his work with William Gale and summarizes some results:

- The fiscal gap over a horizon from the current date t to a terminal date T measures the required increase in the primary surplus (relative to current projections) that would be needed to maintain debt/GDP at its current value.
- Auerbach and Gale (2011) estimated a fiscal gap in the 3 to 6 percent range through 2060 for the US federal-government.
- The estimates assumed an interest rate exceeding the GDP growth rate by one percentage point.
- Auerbach and Gale (2011) noted that the fiscal gaps can be significantly larger (as large as 10% of GDP) if interest rates rise relative to GDP growth or the horizon is extended beyond 2060.
Auerbach (2011) illustrates the approach used in his work with William Gale and summarizes some results

- the fiscal gap over a horizon from the current date t to a terminal date T measures the required increase in the primary surplus (relative to current projections) that would be needed to maintain debt/GDP at its current value
- Auerbach and Gale (2011) estimated a fiscal gap in the 3 to 6 percent range through 2060 for the US federal-government
- the estimates assumed an interest rate exceeding the GDP growth rate by one percentage point
- Auerbach and Gale (2011) noted that the fiscal gaps can be significantly larger (as large as 10% of GDP) if interest rates rise relative to GDP growth or the horizon is extended beyond 2060

Auerbach (2011) reports fiscal gaps for other advanced economies
The fiscal gap calculations are versatile for quantifying the implications of alternative scenarios and assumptions.

Auerbach (2011) considers scenarios with no initial debt, net debt going to a 45% target recommended in IMF (2010), higher differentials between interest rates and GDP growth.

Notably, projected growth of health and pension expenditures (relative to GDP) contributes more than initial debt positions to fiscal gaps.

The Debt-to-GDP ratio may not be a very reliable measure of fiscal stress.
Fiscal Gaps

- The fiscal gap calculations are versatile for quantifying the implications of alternative scenarios and assumptions.
- Auerbach (2011) considers scenarios with...
The fiscal gap calculations are versatile for quantifying the implications of alternative scenarios and assumptions.

Auerbach (2011) considers scenarios with:

- no initial debt
The fiscal gap calculations are versatile for quantifying the implications of alternative scenarios and assumptions.

Auerbach (2011) considers scenarios with:
- no initial debt
- net debt going to a 45% target recommended in IMF (2010)
Figure 3. Fiscal Gaps through 2060

Figure 4. Fiscal Gaps through 2060, Alternative Projections
The fiscal gap calculations are versatile for quantifying the implications of alternative scenarios and assumptions.

Auerbach (2011) considers scenarios with:
- no initial debt
- net debt going to a 45% target recommended in IMF (2010)
- higher differentials between interest rates and GDP growth
The fiscal gap calculations are versatile for quantifying the implications of alternative scenarios and assumptions.

Auerbach (2011) considers scenarios with:
- no initial debt
- net debt going to a 45% target recommended in IMF (2010)
- higher differentials between interest rates and GDP growth

Notably, projected growth of health and pension expenditures (relative to GDP) contributes more than initial debt positions to fiscal gaps.
The fiscal gap calculations are versatile for quantifying the implications of alternative scenarios and assumptions

Auerbach (2011) considers scenarios with

- no initial debt
- net debt going to a 45% target recommended in IMF (2010)
- higher differentials between interest rates and GDP growth

Notably, projected growth of health and pension expenditures (relative to GDP) contributes more than initial debt positions to fiscal gaps

The Debt-to-GDP ratio may not be a very reliable measure of fiscal stress
Bohn (2008) analyzed US data over 1792-2003
Bohn (2008) analyzed US data over 1792-2003

- He introduced an approach to testing for sustainability [also summarized in Polito and Wickens (2012)] based on a regression of surplus/GDP on debt/GDP

- Although subsequent data cast doubt on this conclusion, the basic methodology remains of interest.

- An important contribution of Bohn (2008) was in documenting the role of economic growth and the low return on short-term Treasury debt in stabilizing debt/GDP.
Bohn (2008) analyzed US data over 1792-2003

- He introduced an approach to testing for sustainability [also summarized in Polito and Wickens (2012)] based on a regression of surplus/GDP on debt/GDP
- He concluded that U.S. fiscal policy was sustainable, based on a positive response of surplus/GDP to debt/GDP and evidence of mean reversion in debt/GDP

Although subsequent data cast doubt on this conclusion, the basic methodology remains of interest.

An important contribution of Bohn (2008) was in documenting the role of economic growth and the low return on short-term Treasury debt in stabilizing debt/GDP.
Figure 1: The U.S. Public Debt, Nominal (line) and real (dotted), 1900-2003

Figure 2: The U.S. Public Debt in Percent of GDP 1791-2003
Bohn (2008) analyzed US data over 1792-2003

- he introduced an approach to testing for sustainability [also summarized in Polito and Wickens (2012)] based on a regression of surplus/GDP on debt/GDP
- he concluded that U.S. fiscal policy was sustainable, based on a positive response of surplus/GDP to debt/GDP and evidence of mean reversion in debt/GDP
- although subsequent data cast doubt on this conclusion, the basic methodology remains of interest

An important contribution of Bohn (2008) was in documenting the role of economic growth and the low return on short-term Treasury debt in stabilizing debt/GDP

The reason debt/GDP did not grow was that the growth attributable to primary deficits and interest payments was offset by "the growth dividend" arising from erosion of debt/GDP

The interest cost of debt was on average below the growth rate of GDP
Bohn (2008) analyzed US data over 1792-2003

- He introduced an approach to testing for sustainability [also summarized in Polito and Wickens (2012)] based on a regression of surplus/GDP on debt/GDP
- He concluded that U.S. fiscal policy was sustainable, based on a positive response of surplus/GDP to debt/GDP and evidence of mean reversion in debt/GDP
- Although subsequent data cast doubt on this conclusion, the basic methodology remains of interest

An important contribution of Bohn (2008) was in documenting the role of economic growth and the low return on short-term Treasury debt in stabilizing debt/GDP
Bohn (2008) analyzed US data over 1792-2003

- He introduced an approach to testing for sustainability [also summarized in Polito and Wickens (2012)] based on a regression of surplus/GDP on debt/GDP.
- He concluded that U.S. fiscal policy was sustainable, based on a positive response of surplus/GDP to debt/GDP and evidence of mean reversion in debt/GDP.
- Although subsequent data cast doubt on this conclusion, the basic methodology remains of interest.

An important contribution of Bohn (2008) was in documenting the role of economic growth and the low return on short-term Treasury debt in stabilizing debt/GDP.

- The reason debt/GDP did not grow was that the growth attributable to primary deficits and interest payments was offset by "the growth dividend" arising from erosion of debt/GDP.
Table 1: Deficits versus Changes in the Debt-GDP Ratio

<table>
<thead>
<tr>
<th>Period:</th>
<th>With interest Deficit</th>
<th>Primary Deficit</th>
<th>Interest Charge</th>
<th>Nominal Growth Effect</th>
<th>Real Growth Effect</th>
<th>Inflation Effect</th>
<th>Change in Debt/GDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>To</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>1792</td>
<td>2003</td>
<td>1.2%</td>
<td>0.3%</td>
<td>0.9%</td>
<td>1.3%</td>
<td>0.8%</td>
<td>0.5%</td>
</tr>
<tr>
<td>1792</td>
<td>1868</td>
<td>0.4%</td>
<td>-0.1%</td>
<td>0.5%</td>
<td>0.6%</td>
<td>0.5%</td>
<td>0.1%</td>
</tr>
<tr>
<td>1869</td>
<td>2003</td>
<td>1.7%</td>
<td>0.5%</td>
<td>1.2%</td>
<td>1.7%</td>
<td>1.0%</td>
<td>0.7%</td>
</tr>
<tr>
<td>1792</td>
<td>1914</td>
<td>0.1%</td>
<td>-0.4%</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.0%</td>
</tr>
<tr>
<td>1915</td>
<td>2003</td>
<td>2.8%</td>
<td>1.2%</td>
<td>1.6%</td>
<td>2.4%</td>
<td>1.2%</td>
<td>1.2%</td>
</tr>
</tbody>
</table>

Table 2: Interest Rates on Public Debt versus Growth Rates

<table>
<thead>
<tr>
<th>Period:</th>
<th>Interest Rate *</th>
<th>Nominal Growth</th>
<th>Real Growth</th>
<th>Inflation Growth</th>
<th>Interest-Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>To</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>1792</td>
<td>2003</td>
<td>4.5%</td>
<td>5.2%</td>
<td>3.8%</td>
<td>1.4%</td>
</tr>
<tr>
<td>1792</td>
<td>1868</td>
<td>4.8%</td>
<td>4.9%</td>
<td>4.2%</td>
<td>0.6%</td>
</tr>
<tr>
<td>1869</td>
<td>2003</td>
<td>4.4%</td>
<td>5.3%</td>
<td>3.5%</td>
<td>1.8%</td>
</tr>
<tr>
<td>1792</td>
<td>1914</td>
<td>4.6%</td>
<td>4.3%</td>
<td>4.1%</td>
<td>0.2%</td>
</tr>
<tr>
<td>1915</td>
<td>2003</td>
<td>4.4%</td>
<td>6.4%</td>
<td>3.4%</td>
<td>3.1%</td>
</tr>
</tbody>
</table>

Notes: * The interest rate on public debt is computed as the ratio of interest payments over the average of outstanding debt at the start and the end of each year.
Historical US Data

- Bohn (2008) analyzed US data over 1792-2003
 - he introduced an approach to testing for sustainability [also summarized in Polito and Wickens (2012)] based on a regression of surplus/GDP on debt/GDP
 - he concluded that U.S. fiscal policy was sustainable, based on a positive response of surplus/GDP to debt/GDP and evidence of mean reversion in debt/GDP
 - although subsequent data cast doubt on this conclusion, the basic methodology remains of interest

- An important contribution of Bohn (2008) was in documenting the role of economic growth and the low return on short-term Treasury debt in stabilizing debt/GDP
 - the reason debt/GDP did not grow was that the growth attributable to primary deficits and interest payments was offset by "the growth dividend" arising from erosion of debt/GDP
 - the interest cost of debt was on average below the growth rate of GDP
Table 1: Deficits versus Changes in the Debt-GDP Ratio

<table>
<thead>
<tr>
<th>Period: From</th>
<th>To</th>
<th>With interest Deficit</th>
<th>Primary Deficit</th>
<th>Interest Charge</th>
<th>Nominal Growth Effect</th>
<th>Real Growth Effect</th>
<th>Inflation Effect</th>
<th>Change in Debt/GDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1792</td>
<td>2003</td>
<td>1.2%</td>
<td>0.3%</td>
<td>0.9%</td>
<td>1.3%</td>
<td>0.8%</td>
<td>0.5%</td>
<td>0.0%</td>
</tr>
<tr>
<td>1792</td>
<td>1868</td>
<td>0.4%</td>
<td>-0.1%</td>
<td>0.5%</td>
<td>0.6%</td>
<td>0.5%</td>
<td>0.1%</td>
<td>-0.1%</td>
</tr>
<tr>
<td>1869</td>
<td>2003</td>
<td>1.7%</td>
<td>0.5%</td>
<td>1.2%</td>
<td>1.7%</td>
<td>1.0%</td>
<td>0.7%</td>
<td>0.0%</td>
</tr>
<tr>
<td>1792</td>
<td>1914</td>
<td>0.1%</td>
<td>-0.4%</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.0%</td>
<td>-0.3%</td>
</tr>
<tr>
<td>1915</td>
<td>2003</td>
<td>2.8%</td>
<td>1.2%</td>
<td>1.6%</td>
<td>2.4%</td>
<td>1.2%</td>
<td>1.2%</td>
<td>0.4%</td>
</tr>
</tbody>
</table>

Table 2: Interest Rates on Public Debt versus Growth Rates

<table>
<thead>
<tr>
<th>Period: From</th>
<th>To</th>
<th>Interest Rate *</th>
<th>Nominal Growth</th>
<th>Real Growth</th>
<th>Inflation Growth</th>
<th>Interest-Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1792</td>
<td>2003</td>
<td>4.5%</td>
<td>5.2%</td>
<td>3.8%</td>
<td>1.4%</td>
<td>-0.6%</td>
</tr>
<tr>
<td>1792</td>
<td>1868</td>
<td>4.8%</td>
<td>4.9%</td>
<td>4.2%</td>
<td>0.6%</td>
<td>-0.1%</td>
</tr>
<tr>
<td>1869</td>
<td>2003</td>
<td>4.4%</td>
<td>5.3%</td>
<td>3.5%</td>
<td>1.8%</td>
<td>-1.0%</td>
</tr>
<tr>
<td>1792</td>
<td>1914</td>
<td>4.6%</td>
<td>4.3%</td>
<td>4.1%</td>
<td>0.2%</td>
<td>0.4%</td>
</tr>
<tr>
<td>1915</td>
<td>2003</td>
<td>4.4%</td>
<td>6.4%</td>
<td>3.4%</td>
<td>3.1%</td>
<td>-2.1%</td>
</tr>
</tbody>
</table>

Notes: * The interest rate on public debt is computed as the ratio of interest payments over the average of outstanding debt at the start and the end of each year.
Hall and Sargent (2010) develop a measurement framework for calculating returns on US government bonds with different maturities.
Hall and Sargent (2010) develop a measurement framework for calculating returns on US government bonds with different maturities. They find (like Bohn) that economic growth played the most important role in stabilizing debt/GDP.
Hall and Sargent (2010) develop a measurement framework for calculating returns on US government bonds with different maturities. They find (like Bohn) that economic growth played the most important role in stabilizing debt/GDP. They also document interesting variations in returns across debt maturities and analyze the sources of change in the debt-to-GDP ratio during various episodes. Recent commentary (by Bohn and others) questions the wisdom of continuing US reliance on short-term "safe" debt to finance budget deficits.
Hall and Sargent (2010) develop a measurement framework for calculating returns on US government bonds with different maturities. They find (like Bohn) that economic growth played the most important role in stabilizing debt/GDP. They also document interesting variations in returns across debt maturities and analyze the sources of change in the debt-to-GDP ratio during various episodes. Recent commentary (by Bohn and others) questions the wisdom of continuing US reliance on short-term "safe" debt to finance budget deficits.