A number of contributions have examined specific implications and extensions of the Fiscal Theory of the Price Level (FTPL).
A number of contributions have examined specific implications and extensions of the Fiscal Theory of the Price Level (FTPL).

- we assume (for now) that all public debt rolls over each period and that there is no default on public debt.
A number of contributions have examined specific implications and extensions of the Fiscal Theory of the Price Level (FTPL)

we assume (for now) that all public debt rolls over each period and that there is no default on public debt

Note that a maturing bond must sell at par if there is no default risk; so, we can think of the price level as being defined in units of money or in units of bonds
A number of contributions have examined specific implications and extensions of the Fiscal Theory of the Price Level (FTPL).

- we assume (for now) that all public debt rolls over each period and that there is no default on public debt.
- Note that a maturing bond must sell at par if there is no default risk; so, we can think of the price level as being defined in units of money or in units of bonds.
- The FTPL combines the government budget equation with two equilibrium conditions implied by the representative household’s optimization problem.
General Setup

- A number of contributions have examined specific implications and extensions of the Fiscal Theory of the Price Level (FTPL)
 - we assume (for now) that all public debt rolls over each period and that there is no default on public debt
- Note that a maturing bond must sell at par if there is no default risk; so, we can think of the price level as being defined in units of money or in units of bonds
- The FTPL combines the government budget equation with two equilibrium conditions implied by the representative household’s optimization problem
 - the Euler equation
A number of contributions have examined specific implications and extensions of the Fiscal Theory of the Price Level (FTPL).

- we assume (for now) that all public debt rolls over each period and that there is no default on public debt.

Note that a maturing bond must sell at par if there is no default risk; so, we can think of the price level as being defined in units of money or in units of bonds.

The FTPL combines the government budget equation with two equilibrium conditions implied by the representative household’s optimization problem:

- the Euler equation
- the transversality condition, which implies that households will plan to satisfy (exhaust) their present value budget constraint.
Recall that we wrote the government budget equation,

\[M_{t+1} + \frac{B_{t+1}}{(1 + i_t)} = M_t + B_t + P_t (G_t - \tau_t), \]

as

\[\frac{M_{t+1} + B_{t+1}}{(1 + i_t)} = M_t + B_t + P_t (G_t - \tau_t) - \frac{i_t M_{t+1}}{1 + i_t}, \]

(1)

and defined nominal liabilities as \(L_t = M_t + B_t \)
The Euler equation for a nominal one-period bond is

$$\frac{u'(C_t)}{P_t} = \beta (1 + i_t) E_t \left\{ \frac{u'(C_{t+1})}{P_{t+1}} \right\} ,$$
The Euler equation for a nominal one-period bond is

\[\frac{u'(C_t)}{P_t} = \beta (1 + i_t) E_t \left\{ \frac{u'(C_{t+1})}{P_{t+1}} \right\}, \]

Substituting this in (1) gives

\[\frac{u'(C_t) L_t}{P_t} = \beta E_t \left[\frac{u'(C_{t+1}) L_{t+1}}{P_{t+1}} \right] \]

\[+ u'(C_t) \left[\tau_t + \left(\frac{i_t}{1 + i_t} \right) \left(\frac{M_{t+1}}{P_t} \right) - G_t \right] \]
Using the households’ Euler equation, we have

\[
\frac{1}{(1+i_t)} = \beta E_t \left[\frac{u'(C_{t+1})}{P_{t+1}} \right] \left[\frac{u'(C_t)}{P_t} \right]^{-1},
\]

and plugging this in the budget equation,

\[
\beta E_t \left[\frac{u'(C_{t+1})}{P_{t+1}} \right] L_{t+1} = \frac{u'(C_t)}{P_t} \left[L_t + P_t (G_t - \tau_t) - \frac{i_t M_{t+1}}{1+i_t} \right]
\]

and

\[
\beta E_t \left[\frac{u'(C_{t+1})L_{t+1}}{P_{t+1}} \right] = \frac{u'(C_t)L_t}{P_t} + u'(C_t) \left[G_t - \tau_t - \left(\frac{i_t}{1+i_t} \right) \left(\frac{M_{t+1}}{P_t} \right) \right]
\]
An Equilibrium Condition

- Iterating (2) forward and imposing the household’s transversality condition,

\[\lim_{n \to +\infty} \beta^n E_t \left\{ \frac{u'(C_{t+n})L_{t+n}}{P_{t+n}} \right\} = 0 \]

we get

\[\frac{u'(C_t)L_t}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j u'(C_{t+j}) \left[S_{t+j} + \left(\frac{i_{t+j}}{1 + i_{t+j}} \right) \left(\frac{M_{t+j+1}}{P_{t+j}} \right) \right] \quad (3) \]

where \(S_t = \tau_t - G_t \) is the primary surplus exclusive of central-bank transfers
Let
\[z_t = \frac{u'(C_t)L_t}{P_t} \]
and
\[x_t = u'(C_t) \left[\tau_t + \left(\frac{i_t}{1+i_t} \right) \left(\frac{M_{t+1}}{P_t} \right) - G_t \right] \]
to get
\[z_t = \beta E_t z_{t+1} + x_t \]
Iterating forward, we get
\[z_t = \beta^2 E_t z_{t+2} + \beta E_t x_{t+1} + x_t \]
\[= \beta^3 E_t z_{t+3} + \beta^2 E_t x_{t+2} + \beta E_t x_{t+1} + x_t \]
\[= \ldots \]
\[= \beta^n E_t z_{t+n} + E_t \sum_{j=0}^{n-1} \beta^j x_{t+j} \]
Let \(n \) tend to infinity and impose the transversality condition
\[\lim_{n \to +\infty} \beta^n E_t z_{t+n} = 0 \]
to get
\[z_t = E_t \sum_{j=0}^{+\infty} \beta^j x_{t+j} \]
Or
\[\frac{u'(C_t)L_t}{P_t} = E_t \sum_{j=0}^{+\infty} \beta^j \left\{ u'(C_{t+j}) \left[\tau_{t+j} + \left(\frac{i_{t+j}}{1+i_{t+j}} \right) \left(\frac{M_{t+j+1}}{P_{t+j}} \right) - G_{t+j} \right] \right\} \]
An Equilibrium Condition

- Iterating (2) forward and imposing the household’s transversality condition,

$$\lim_{n \to +\infty} \beta^n E_t \left\{ \frac{u'(C_{t+n})L_{t+n}}{P_{t+n}} \right\} = 0$$

we get

$$\frac{u'(C_t)L_t}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j u'(C_{t+j}) \left[S_{t+j} + \left(\frac{i_{t+j}}{1 + i_{t+j}} \right) \left(\frac{M_{t+j+1}}{P_{t+j}} \right) \right]$$

(3)

where $S_t = \tau_t - G_t$ is the primary surplus exclusive of central-bank transfers

- Recall that the level of nominal public-sector liabilities $(L_t = M_t + B_t)$ is predetermined
The government’s "PVBC" is actually a valuation equation for public-sector liabilities.
An Interpretation

- The government’s "PVBC" is actually a valuation equation for public-sector liabilities.
- The analogy is more transparent if we recall the stochastic discount factor of the consumption-based capital asset pricing model and write (3) as:

\[
\frac{L_t}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j \left[\frac{u'(C_{t+j})}{u'(C_t)} \right] \left[S_{t+j} + \left(\frac{i_{t+j}}{1 + i_{t+j}} \right) \left(\frac{M_{t+j+1}}{P_{t+j}} \right) \right]
\]
An Interpretation

- The government's "PVBC" is actually a valuation equation for public-sector liabilities.
- The analogy is more transparent if we recall the stochastic discount factor of the consumption-based capital asset pricing model and write (3) as:

\[
\frac{L_t}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j \left[\frac{u'(C_{t+j})}{u'(C_t)} \right] \left[S_{t+j} + \left(\frac{i_{t+j}}{1 + i_{t+j}} \right) \left(\frac{M_{t+j+1}}{P_{t+j}} \right) \right]
\]

- Real public-sector liabilities must equal the expected present value of primary surpluses inclusive of central-bank transfers; much like stock prices are related to the expected present value of dividends.
An Interpretation

- The government’s "PVBC" is actually a valuation equation for public-sector liabilities.
- The analogy is more transparent if we recall the stochastic discount factor of the consumption-based capital asset pricing model and write (3) as

\[\frac{L_t}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j \left[\frac{u'(C_{t+j})}{u'(C_t)} \right] \left[S_{t+j} + \left(\frac{i_{t+j}}{1 + i_{t+j}} \right) \left(\frac{M_{t+j+1}}{P_{t+j}} \right) \right] \]

- Real public-sector liabilities must equal the expected present value of primary surpluses inclusive of central-bank transfers; much like stock prices are related to the expected present value of dividends.
- Cochrane (2005): debt holders are the "residual claimants" on primary surpluses.
A Convenient Specification

To get a specification with fiscal variables expressed relative to GDP (for policy applications), assume logarithmic utility from consumption and set $G_t = gy_t$ (i.e. assume the government purchases a constant fraction of output) in our CIA setup.
A Convenient Specification

- To get a specification with fiscal variables expressed relative to GDP (for policy applications), assume logarithmic utility from consumption and set $G_t = gy_t$ (i.e. assume the government purchases a constant fraction of output) in our CIA setup.

- In equilibrium, with $C_t = (1 - g)y_t$, (2) becomes

$$\frac{L_t}{P_t y_t} = \beta E_t \left[\frac{L_{t+1}}{P_{t+1} y_{t+1}} \right] + \frac{\tau_t}{y_t} - g + \left(\frac{i_t}{1 + i_t} \right)$$

(4)

and (3) turns into

$$\frac{L_t}{P_t y_t} = E_t \sum_{j=0}^{\infty} \beta^j \left[\frac{\tau_{t+j}}{y_{t+j}} - g + \left(\frac{i_{t+j}}{1 + i_{t+j}} \right) \right]$$

(5)
A Convenient Specification

- To get a specification with fiscal variables expressed relative to GDP (for policy applications), assume logarithmic utility from consumption and set $G_t = gy_t$ (i.e. assume the government purchases a constant fraction of output) in our CIA setup.

- In equilibrium, with $C_t = (1 - g) y_t$, (2) becomes

$$
\frac{L_t}{P_t y_t} = \beta E_t \left[\frac{L_{t+1}}{P_{t+1} y_{t+1}} \right] + \frac{\tau_t}{y_t} - g + \left(\frac{i_t}{1 + i_t} \right)
$$

and (3) turns into

$$
\frac{L_t}{P_t y_t} = E_t \sum_{j=0}^{\infty} \beta^j \left[\frac{\tau_{t+j}}{y_{t+j}} - g + \left(\frac{i_{t+j}}{1 + i_{t+j}} \right) \right]
$$

- In our model with exogenous output, we can analyze price determination (as we did above).
We can also think of

\[
\frac{L_t}{P_t y_t} = E_t \sum_{j=0}^{\infty} \beta^j \left[\frac{\tau_{t+j}}{y_{t+j}} - g + \left(\frac{i_{t+j}}{1 + i_{t+j}} \right) \right]
\]

as a fiscal theory of nominal GDP, and combine it with a model of output determination.
A Shortcut

- We can also think of

\[
\frac{L_t}{P_t y_t} = E_t \sum_{j=0}^{\infty} \beta^j \left[\frac{\tau_{t+j}}{y_{t+j}} - g + \left(\frac{i_{t+j}}{1 + i_{t+j}} \right) \right]
\]

as a fiscal theory of nominal GDP, and combine it with a model of output determination.

- A fiscal expansion (which decreases the right-hand side) must increase nominal GDP.
We can also think of
\[
\frac{L_t}{P_t y_t} = E_t \sum_{j=0}^{\infty} \beta^j \left[\frac{\tau_{t+j}}{y_{t+j}} - g + \left(\frac{i_{t+j}}{1 + i_{t+j}} \right) \right]
\]
as a fiscal theory of nominal GDP, and combine it with a model of output determination.

A fiscal expansion (which decreases the right-hand side) must increase nominal GDP.

If we consider a model with price rigidity, like the standard New Keynesian (NK) model, the adjustment of nominal GDP will involve an increase in output.
We can also think of
\[
\frac{L_t}{P_t y_t} = E_t \sum_{j=0}^{\infty} \beta^j \left[\frac{\tau_{t+j}}{y_{t+j}} - g + \left(\frac{i_{t+j}}{1 + i_{t+j}} \right) \right]
\]
as a fiscal theory of nominal GDP, and combine it with a model of output determination.

A fiscal expansion (which decreases the right-hand side) must increase nominal GDP.

If we consider a model with price rigidity, like the standard New Keynesian (NK) model, the adjustment of nominal GDP will involve an increase in output.

- Ricardian Equivalence does not hold.
A Shortcut

- We can also think of

\[
\frac{L_t}{P_t y_t} = E_t \sum_{j=0}^{\infty} \beta^j \left[\frac{\tau_{t+j}}{y_{t+j}} - g + \left(\frac{i_{t+j}}{1 + i_{t+j}} \right) \right]
\]

as a fiscal theory of nominal GDP, and combine it with a model of output determination.

- A fiscal expansion (which decreases the right-hand side) must increase nominal GDP.

- If we consider a model with price rigidity, like the standard New Keynesian (NK) model, the adjustment of nominal GDP will involve an increase in output.

 - Ricardian Equivalence does not hold.
 - Implications about fiscal multipliers can be quite different from those of the NK model under (i.e., implicitly assuming!) a Ricardian fiscal regime.
We can use

\[\frac{L_t}{P_t y_t} = E_t \sum_{j=0}^{\infty} \beta^j \left[\frac{\tau_{t+j}}{y_{t+j}} - g + \left(\frac{i_{t+j}}{1 + i_{t+j}} \right) \right] \]

to calculate tax multipliers (say, assuming that prices are pre-set)
Multipliers

- We can use

\[
\frac{L_t}{p_t y_t} = E_t \sum_{j=0}^{\infty} \beta^j \left[\frac{\tau_{t+j}}{y_{t+j}} - g + \left(\frac{i_{t+j}}{1 + i_{t+j}} \right) \right]
\]

to calculate tax multipliers (say, assuming that prices are pre-set)

- the implied multipliers (here for a lump-sum tax) are large
Multipliers

We can use

\[\frac{L_t}{P_t y_t} = E_t \sum_{j=0}^{\infty} \beta^j \left[\frac{\tau_{t+j}}{y_{t+j}} - g + \left(\frac{i_{t+j}}{1 + i_{t+j}} \right) \right] \]

to calculate tax multipliers (say, assuming that prices are pre-set)

- the implied multipliers (here for a lump-sum tax) are large
- the tax multipliers are smaller if debt/GDP is higher, because there are more "residual claimants" to share and absorb the effects of a fiscal shock
Multipliers

- We can use

\[
\frac{L_t}{P_t y_t} = E_t \sum_{j=0}^{\infty} \beta^j \left[\frac{\tau_{t+j}}{y_{t+j}} - g + \left(\frac{i_{t+j}}{1 + i_{t+j}} \right) \right]
\]

to calculate tax multipliers (say, assuming that prices are pre-set)

- the implied multipliers (here for a lump-sum tax) are large
- the tax multipliers are smaller if debt/GDP is higher, because there are more "residual claimants" to share and absorb the effects of a fiscal shock

- Multipliers for government purchases are discussed in CCD (2010); they can be large (compared to what we infer from DSGE models that assume a Ricardian policy regime)
Multipliers

We can use

$$\frac{L_t}{P_t y_t} = E_t \sum_{j=0}^{\infty} \beta^j \left[\frac{\tau_{t+j}}{y_{t+j}} - g + \left(\frac{i_{t+j}}{1 + i_{t+j}} \right) \right]$$

to calculate tax multipliers (say, assuming that prices are pre-set)

- the implied multipliers (here for a lump-sum tax) are large
- the tax multipliers are smaller if debt/GDP is higher, because there are more "residual claimants" to share and absorb the effects of a fiscal shock

Multipliers for government purchases are discussed in CCD (2010); they can be large (compared to what we infer from DSGE models that assume a Ricardian policy regime)

We will discuss fiscal multipliers later
Criticisms of the FTPL

- Some theoretical aspects of the FTPL have been controversial— in particular,
Criticisms of the FTPL

Some theoretical aspects of the FTPL have been controversial—in particular,

- Niepelt (2004) argued that the PVBC is a constraint if we model an initial period when bonds are first issued, and take into account bondholders’ portfolio decisions.
Criticisms of the FTPL

Some theoretical aspects of the FTPL have been controversial— in particular,

- Niepelt (2004) argued that the PVBC is a constraint if we model an initial period when bonds are first issued, and take into account bondholders’ portfolio decisions
- Canzoneri, Cumby, and Diba (2001) argued that arbitrarily small and infrequent reactions of the surplus to liabilities lead to a Ricardian regime; they also argued that NR regimes have counter-factual implications for the dynamics of surpluses and liabilities
Criticisms of the FTPL

Some theoretical aspects of the FTPL have been controversial— in particular,

- Niepelt (2004) argued that the PVBC is a constraint if we model an initial period when bonds are first issued, and take into account bondholders’ portfolio decisions
- Canzoneri, Cumby, and Diba (2001) argued that arbitrarily small and infrequent reactions of the surplus to liabilities lead to a Ricardian regime; they also argued that NR regimes have counter-factual implications for the dynamics of surpluses and liabilities

The proponents of the FTPL [e.g., Cochrane (2005)] respond to these criticisms, but the details of the theory are beyond the scope of our course
Criticisms of the FTPL

- Some theoretical aspects of the FTPL have been controversial— in particular,
 - Niepelt (2004) argued that the PVBC is a constraint if we model an initial period when bonds are first issued, and take into account bondholders’ portfolio decisions
 - Canzoneri, Cumby, and Diba (2001) argued that arbitrarily small and infrequent reactions of the surplus to liabilities lead to a Ricardian regime; they also argued that NR regimes have counter-factual implications for the dynamics of surpluses and liabilities

- The proponents of the FTPL [e.g., Cochrane (2005)] respond to these criticisms, but the details of the theory are beyond the scope of our course

- The current policy-oriented interest in the FTPL arises from the broad (somewhat informal) implication that expectations about future fiscal imbalances may hamper the ability of central banks to control inflation
The FTPL’s emphasis on the transversality condition of households, and the equilibrium condition (3) is natural in the context of the formal model but seems too "generous" for defining sustainable fiscal policies in reality.
The FTPL’s emphasis on the transversality condition of households, and the equilibrium condition (3) is natural in the context of the formal model but seems too "generous" for defining sustainable fiscal policies in reality.

We may define (somewhat informally) sustainable fiscal policies as those that keep the debt-to-GDP ratio suitably bounded.
The FTPL’s emphasis on the transversality condition of households, and the equilibrium condition (3) is natural in the context of the formal model but seems too "generous" for defining sustainable fiscal policies in reality.

- We may define (somewhat informally) sustainable fiscal policies as those that keep the debt-to-GDP ratio suitably bounded.

- For policy applications, we may also consider fiscal reaction functions that adjust the surplus-to-GDP ratio in response to changes in the debt-to-GDP ratio.
Define

\[l_t \equiv \frac{L_t}{P_t y_t}, \quad s_t = \frac{S_t}{y_t}, \quad \text{and} \quad \delta_t = \frac{i_t}{1 + i_t} \]
Evolution of Debt/GDP

- Define

\[l_t \equiv \frac{L_t}{P_t y_t}, \quad s_t = \frac{S_t}{y_t}, \quad \text{and} \quad \delta_t = \frac{i_t}{1 + i_t} \]

- Write (4) as

\[l_t = \beta E_t l_{t+1} + s_t + \delta_t \]
Evolution of Debt/GDP

- Define
 \[l_t \equiv \frac{L_t}{P_t y_t}, \quad s_t = \frac{S_t}{y_t}, \quad \text{and} \quad \delta_t = \frac{i_t}{1 + i_t} \]

- Write (4) as
 \[l_t = \beta E_t l_{t+1} + s_t + \delta_t \]

- Consider fiscal reaction functions with
 \[s_t = \phi l_t + x_t, \quad 0 \leq \phi \leq 1 \]

 where \(\{x_t\} \) is an exogenous stochastic process, capturing the effects of the political process and other factors on the surplus-to-GDP ratio
Define
\[l_t \equiv \frac{L_t}{P_t y_t}, \quad s_t = \frac{S_t}{y_t}, \quad \text{and} \quad \delta_t = \frac{i_t}{1 + i_t} \]

Write (4) as
\[l_t = \beta E_t l_{t+1} + s_t + \delta_t \]

Consider fiscal reaction functions with
\[s_t = \phi l_t + x_t, \quad 0 \leq \phi \leq 1 \]

where \(\{x_t\} \) is an exogenous stochastic process, capturing the effects of the political process and other factors on the surplus-to-GDP ratio.

The dynamics of \(l_t \) are governed by
\[l_t = \left(\frac{\beta}{1 - \phi} \right) E_t l_{t+1} + \frac{x_t + \delta_t}{1 - \phi} \]
Passive Fiscal Policy

- Following Leeper (1991), we define a passive fiscal policy as a policy with

\[\left| \frac{\beta}{1 - \phi} \right| > 1 \]
Following Leeper (1991), we define a passive fiscal policy as a policy with

$$\left| \frac{\beta}{1 - \phi} \right| > 1$$

Under such a policy, the response of s_t to l_t is larger than the steady-state real interest rate; more precisely (for the version I use here), we have:

$$\phi > 1 - \beta$$
Following Leeper (1991), we define a passive fiscal policy as a policy with

\[
\left| \frac{\beta}{1 - \phi} \right| > 1
\]

Under such a policy, the response of \(s_t \) to \(l_t \) is larger than the steady-state real interest rate; more precisely (for the version I use here), we have:

\[
\phi > 1 - \beta
\]

This strong response keeps the debt-to-GDP ratio bounded, for any bounded sequence \(\{x_t + \delta_t\} \), in any backward-looking solution to

\[
E_t l_{t+1} = \left(\frac{1 - \phi}{\beta} \right) l_t - \frac{x_t + \delta_t}{\beta}
\]
Active Fiscal Policy

- By contrast, an active fiscal policy has
 \[\left| \frac{\beta}{1 - \phi} \right| < 1 \]
By contrast, an active fiscal policy has

\[\left| \frac{\beta}{1 - \phi} \right| < 1 \]

Under such a policy, the response of \(s_t \) to \(l_t \) is too weak,

\[\phi < 1 - \beta \]

and the only bounded solution to

\[E_t l_{t+1} = \left(\frac{1 - \phi}{\beta} \right) l_t - \frac{x_t + \delta_t}{\beta} \]

is the forward-looking solution emphasized by the FTPL.
By contrast, an active fiscal policy has

$$\left| \frac{\beta}{1 - \phi} \right| < 1$$

Under such a policy, the response of s_t to l_t is too weak,

$$\phi < 1 - \beta$$

and the only bounded solution to

$$E_t l_{t+1} = \left(\frac{1 - \phi}{\beta} \right) l_t - \frac{x_t + \delta_t}{\beta}$$

is the forward-looking solution emphasized by the FTPL.

The fiscal policy is active in the sense that it sets the nominal anchor (as long as we confine our analysis to bounded solutions).
In Leeper’s setup there are two combinations of policies that ensure a unique determinate equilibrium:
In Leeper’s setup there are two combinations of policies that ensure a unique determinate equilibrium:

- active monetary policy (setting the nominal anchor) combined with passive fiscal policy
In Leeper’s setup there are two combinations of policies that ensure a unique determinate equilibrium:

- active monetary policy (setting the nominal anchor) combined with passive fiscal policy
- passive monetary policy combined with active fiscal policy (setting the nominal anchor)
In Leeper’s setup there are two combinations of policies that ensure a unique determinate equilibrium:

- active monetary policy (setting the nominal anchor) combined with passive fiscal policy
- passive monetary policy combined with active fiscal policy (setting the nominal anchor)

If both policies are passive, we have indeterminacy.
In Leeper’s setup there are two combinations of policies that ensure a unique determinate equilibrium:

- active monetary policy (setting the nominal anchor) combined with passive fiscal policy
- passive monetary policy combined with active fiscal policy (setting the nominal anchor)

If both policies are passive, we have indeterminacy

If both policies are active, we have over-determinacy and the possibility of explosive equilibria
Leeper’s recent papers (with coauthors) loosen up the FTPL and move it closer to addressing current policy concerns.
Leeper’s recent papers (with coauthors) loosen up the FTPL and move it closer to addressing current policy concerns. Fiscal and monetary policy may randomly switch between active and passive specifications, capturing the effects of the political process and other policy concerns (like the financial crisis); this loosens up our analysis of the policy coordination requirements.
Leeper’s recent papers (with coauthors) loosen up the FTPL and move it closer to addressing current policy concerns:

- Fiscal and monetary policy may randomly switch between active and passive specifications, capturing the effects of the political process and other policy concerns (like the financial crisis); this loosens up our analysis of the policy coordination requirements.
- Expectations of the private sector about the likelihood of future regimes (binding fiscal limits, the possibility of default) can evolve.
Leeper’s recent papers (with coauthors) loosen up the FTPL and move it closer to addressing current policy concerns:

- Fiscal and monetary policy may randomly switch between active and passive specifications, capturing the effects of the political process and other policy concerns (like the financial crisis); this loosens up our analysis of the policy coordination requirements.
- Expectations of the private sector about the likelihood of future regimes (binding fiscal limits, the possibility of default) can evolve.

These extensions make room for news about fiscal policy to be inconsequential during some periods and lead to big equilibrium adjustments during others, as we will see later.
Cochrane’s (2005) asset-valuation interpretation is useful for thinking about the implications of default risk and long-term debt.
Cochrane’s (2005) asset-valuation interpretation is useful for thinking about the implications of default risk and long-term debt. CCD (2010) summarize and cite the contributions.
Cochrane’s (2005) asset-valuation interpretation is useful for thinking about the implications of default risk and long-term debt.

CCD (2010) summarize and cite the contributions.

We will discuss default risk later, but more remains to be done on this topic.