
The SABL Algorithm

John Geweke

August, 2015

Abstract

This is an overview of the SABL algorithm. More detailed material will be
avaialble to workshop registrants prior to the workshop

1

Contents

1 C phase 4

2 S phase 7

3 M phase 8

4 Convergence, the two-pass variant of SABL and accuracy 10

5 Convergence and the two-pass variant 10

6 Numerical accuracy 11

7 Marginal likelihood 12

8 Optimization 13

2

The SABL algorithm is a procedure for the controlled introduction of new informa-
tion. It pertains to situations in which information can be represented as the probabil-
ity distribution of a finite dimensional vector. SABL approximates this distribution by
means of many (typically on the order of 104 to 106) alternative versions of the vector.
These versions are called particles, reflecting some of SABL’s roots in the particle filter-
ing literature. In the SABL algorithm particles undergo a sequence of transformations
as information is introduced. With minor exceptions accounting for a negligible frac-
tion of computing time in typical research applications, these transformations amount
to identical instructions that operate on each particle in isolation. SABL is therefore
a pleasingly parallel algorithm. This property is responsible for dramatic decreases in
computing time for many research applications with GPU execution of SABL.
At its highest level the SABL algorithm looks like this:

• Represent initial information

• While information not entirely incorporated

—Determine information increment and incorporate by weighting particles

—Remove the weights by resampling

—Modify the particles to represent the information more effi ciently

• End

In the sequential Monte Carlo literature each pass through the loop is known a cycle,
and we will use ` to index cycles. The three steps in each cycle are phases. The first
step is the correction phase, the second the selection phase, and the third is the mutation
phase; for short, C phase, S phase and M phase.
Let θ ∈ Θ ⊆ Rd denote the vector whose probability distribution represents informa-

tion. The notation reflects the context of Bayesian inference about a parameter vector.
We develop the main ideas in this context and subsequently treat optimization as a
variant, in Section 8. Denote the particles by θjn, the double subscripts indicating J
groups of N particles each. Initially θ has probability density p0 (θ); extension beyond
absolutely continuous distributions is easy, and this streamlines the notation. In SABL
the particles initially are

θ
(0)
jn

iid∼ p(0) (θ) (j = 1, . . . , J ;n = 1, . . . , N) . (1)

In Bayesian inference p(0) (θ) is a proper prior density and in optimization it is the
probability density of an instrumental distribution (see Section 8). It must be practical
to sample from the initial distribution (1) and to evaluate p(0) (θ).
Denote the density incorporating all the information by p∗ (θ). SABL requires that

it be possible to evaluate a kernel k (θ) with the properties

k (θ) ≥ 0 ∀ θ ∈ Θ,
∫

Θ

k (θ) dθ <∞, p∗ (θ) ∝ k∗ (θ) = p(0) (θ) k (θ) . (2)

3

In Bayesian inference the kernel k (θ) is the likelihood function,

k (θ) = p (y1:T | θ) , (3)

where T denotes sample size and y1:T = {y1, . . . , yT} denotes the data. In the optimiza-
tion problem maxθ∈Θ h (θ),

k (θ) = exp [r · h (θ)] , (4)

where r > 0 and typically r is large.
Cycle ` begins with the kernel k(`−1) and ends with the kernel k(`). In the first and

last cycles,
k(0) = 1 and k(L) (θ) = k (θ) ,

respectively. Correspondingly define k∗(`) (θ) = p(0) (θ) k(`) (θ), implying

k∗(0) = p(0) (θ) and k∗(L) (θ) = k∗ (θ) . (5)

The particles change in each cycle, and reflecting this let θ(`)
jn denote the particles at

the end of cycle `. The initial particles θ(0)
jn have the common distribution (1) and are

independent. In succeeding cycles the particles θ(`)
jn continue to be identically distributed

but they are not independent. The theory underlying SABL, discussed further in this
section and developed in detail by Durham and Geweke (2015) drawing on sequential

Monte Carlo theory, assures that the final particles θjn = θ
(L)
jn

d−→ p∗ (θ). This conver-
gence in distribution takes place in N , the number of particles per group. The result is
actually stronger: the particles are ergodic in N , meaning that for any function g for
which E [g (θ)] =

∫
Θ
g (θ) p∗ (θ) dθ exists,

lim
N→∞

N−1

N∑
n=1

g (θjn) = E [g (θ)] (6)

with probability 1 in all groups j = 1, . . . , J .
A leading technical challenge in practical sequential Monte Carlo algorithms, which of

course work with finite N , is to limit the dependence amongst particles, and in particular
to keep dependence from increasing from one cycle to the next to the point that the final
distribution of particles is an unreliable representation of any distribution. A further
technical challenge is to provide a measure of the accuracy of the approximation implicit
in the left side of (6) for finite N that is itself reliable. The SABL algorithm and toolbox
do both in a way that makes minimal demands on users. The remainder of this section,
and Section ?? that follows, provide the details.

1 C phase

For each cycle ` define the weight function

w(`) (θ) = k(`) (θ) /k(`−1) (θ) .

4

The theory underlying the SABL algorithm requires that there exist an upper bound
w(`), that is,

w(`) (θ) < w(`) <∞ ∀ θ ∈ Θ.

The C phase determines w(`) (θ) explicitly and thereby defines

k(`) (θ) = w(`) (θ) · k(`−1) (θ) . (7)

and

p∗(`) (θ) = k∗(`) (θ) dθ/

∫
Θ

k∗(`) (θ) dθ.

Correspondingly, define
k∗(`) = p(0) (θ) k(`) (θ) (8)

and note (7) implies k∗(`) (θ) = w(`) (θ) · k∗(`−1) (θ) as well. The weight functions w(`) (θ)
are designed so that there exists L < ∞ for which k(L) (θ) = k (θ), although the value
of L is in general not known at the outset.
One approach is to use the functional form w(`) (θ) = k (θ)∆` and determine a suitable

choice of ∆` > 0. Thus at the end of cycle `, k(`) (θ) = k (θ)r` where r` =
∑`

s=1 ∆s.
This variant of the C phase is known as power tempering or simply tempering. The
term originates in the simulated annealing literature in which T` = r−1

` is known as
temperature and {T`} as the cooling schedule. Another approach originates in particle
filtering and Bayesian inference: k(`) (θ) = p (y1:t` | θ), where 0 < t1 . . . < tL = T (sample
size). The increments are therefore w(`) (θ) = p

(
yt`−1+1:t` | y1:t`−1 , θ

)
. This variant of the

C phase is known as data tempering.
The C phase can be motivated informally by analogy to importance sampling, a

Monte Carlo simulation method with at least a 60-year history, interpreting k∗(`−1) (θ)
as the kernel of the source density and k∗(`) (θ) as the kernel of the target density.
(Recall the definition of k∗(`) (θ) in (8).) If it were the case that the particles θ(`−1)

jn were
independent and had common distribution indicated by the kernel density k∗(`−1) (θ),
then ∑J

j=1

∑N
n=1w

(
θ

(`−1)
jn

)
g
(
θ

(`−1)
jn

)
∑J

j=1

∑N
n=1w

(
θ

(`−1)
jn

) a.s.−→
∫

Θ
k∗(`) (θ) g (θ) dθ∫
Θ
k∗(`) (θ) dθ

=

∫
Θ

p∗(`) (θ) g (θ) dθ = E(`) [g (θ)] (9)

so long as E(`) [g (θ)] exists. The convergence is in N , the number of particles per group.
The core of the argument for importance sampling is∫

Θ

p∗(`) (θ) g (θ) dθ =

∫
Θ
w(`) (θ) k∗(`−1) (θ) g (θ) dθ∫
Θ
w(`) (θ) k∗(`−1) (θ) dθ

=

∫
Θ
w(`) (θ) (θ) p∗(`−1)g (θ) dθ∫
Θ
w(`) (θ) p∗(`−1) (θ) dθ

.

This result does not apply strictly, here, because while the particles θ(`−1)
jn are identically

distributed, they are not independent and k∗(`−1) (θ) is at best an approximation of

5

the kernel density of the true common distribution of the particles θ(`−1)
jn so long as

N < ∞ (as it must be in practice). But many of the practical concerns in importance
sampling carry over. In particular, success lies in w (θ) being “well-conditioned”—loosely
speaking, variation in w (θjn) must not be too great. For example, diffi culties arise when
just a few weights w (θjn) account for most of the sum. In this case the target density
kernel k∗(`) (θ) is represented almost entirely by a small number of particles and the
approximation of E(`) [g (θ)] implicit in the left side of (9) is poor.
TheC phase directly confronts the key question of howmuch information to introduce

in cycle `: too little and L will be larger than it need be; too much, and it becomes
diffi cult for the other phases to convert ill-weighted particles from cycle `−1 into particles
from cycle ` suffi ciently independent that the representation of the distribution does not
deteriorate from one cycle to the next into a state of gross unreliability. A conventional
and effective way to monitor the quality of the weight function is by means of relative
effective sample size

RESS(`) =
ESS(`)

JN
=

[∑J
j=1

∑N
n=1w

(`)
(
θ

(`−1)
jn

)]2

JN
∑J

j=1

∑N
n=1w

(`)
(
θ

(`−1)
jn

)2 . (10)

The effective sample size ESS(`) is an adjustment to the sample size (number of particles,
JN) that accounts for lack of balance in the weights, and relative effective size is its
ratio to sample size. Notice that if all weights are the same then ESS(`) = JN and
RESS(`) = 1, whereas if only one weight is positive then ESS(`) = 1 and RESS(`) =
1/JN .
In general RESS(`) is lower the more information is introduced in the C phase. This

is always true for power tempering and as a practical matter is nearly always the case for
data tempering. It suggests a strategy of introducing information only up to the point
where RESS(`) has just dropped or would drop below are target value. The target
RESS∗ = 0.5 is usually reasonable, and it is the default value in the SABL toolbox.
Practical experience shows that somewhat higher RESS∗ leads to more cycles but faster
execution in the M phase, lower RESS∗ to fewer cycles but slower M phase execution,
and as a result there is not much difference in execution time over the interval (0.1, 0.9)
for RESS∗.
For data tempering this suggests initializing w(`) (θ) = 1, followed by iterations

(s = 1, 2, . . .). Iteration s introduces yt`−1+s, updates

w(`)
(
θ

(`−1)
jn

)
= w(`)

(
θ

(`−1)
jn

)
· p
(
yt`−1+s | yt`−1+s−1, θ

(`−1)
jn

)
,

and computes the correspondingRESS(`). Iterations terminate the first timeRESS(`) <
RESS∗. This procedure has been well established in the sequential Monte Carlo particle
filtering literature for years.
Such strategies have not been employed previously for power tempering. The first

instance appears to be Geweke and Frischknecht (2014). Substituting w(`) (θ) = k (θ)∆`

6

in (10),

RESS(`) =

[∑J
j=1

∑n
N=1 k

(
θ

(`−1)
jn

)∆`

]2

JN
∑J

j=1

∑n
N=1 k

(
θ

(`−1)
jn

)2∆`
. (11)

Setting RESS(`) = RESS∗ produces a nonlinear equation in the single variable
∆` that has a unique and easily computed solution so long as RESS∗ ∈ (0, 1) . If the
solution implies r(`) > 1 then ∆(`) = 1 − r(`−1) instead and the cycle ` = L is the last
one.

2 S phase

The rest of cycle ` starts with the weighted particles θ(`−1)
jn and produces unweighted par-

ticles θ(`)
jn that that meet or exceed a mixing condition —a measure of lack of dependence

described in the next section. The S phase begins this process, removing weights by
means of resampling. The principle behind resampling is to regard the weight function
as proportional to a discrete probability function defined over the particles and draw
from this distribution with replacement. Hence the name selection phase. SABL per-
forms this operation on each group of particles separately —that is, particles are always
selected within groups and never across groups. This independence between the groups
j = 1, . . . , J is essential in (1) proving the convergence of the algorithm, (2) assessing
the mixing condition in the M phase, and (3) providing a numerical standard error for
the approximation as discussed in Section 6. Resampling produces unweighted particles
denoted θ(`,0)

jn .
The most elementary resampling method is to make N independent and identically

distributed draws from the multinomial distribution with argument N and probabilities

pjn = w(`)
(
θ

(`−1)
jn

)
/

N∑
i=1

w(`)
(
θ

(`−1)
ji

)
(n = 1, . . . , N) .

This method is known as multinomial resampling. An alternative method, known as
residual resampling, is to compute the same probabilities and collect an initial sub-
sample of size N∗ ≤ N consisting of [N · pjn] copies of each particle θjn, where the
function [·] is standard notation for what is variously known as the greatest whole in-
teger, greatest integer not greater than, or floor function. Then draw the remaining
N − N∗ particles by means of multinomial resampling with probabilities probabilities
p∗JN ∝ Npjn − [N · pjn]. Residual resampling results in lower dependence amongst the
particles θ(`,0)

jn (n = 1, . . . , N) than does multinomial resampling. For both methods there
are central limit theorems that are essential to demonstrating convergence and interpret-
ing numerical standard errors. There are other resampling methods that lead to even
less dependence amongst the particles, but for these methods central limit theorems do
not apply. These methods are all described in Douc et al. (2005).

7

The S phase is a simple but key part of the SABL algorithm. Resampling is also a
key part of evolutionary (or, genetic) algorithms where it plays much the same role. The
particles θ(`,0)

jn are for this reason sometimes called the children of the parent particles

θ
(`−1)
jn , and also to emphasize the fact that for each child θ(`,0)

jn there is a parent θ(`−1)
jn′ .

Parents with larger weights are likely to have more children — it is not hard to work
out the exact distribution for any one parent for multinomial resampling and then again
for residual resampling. With both, the expected number of children, or fertility, of the
parent θ(`−1)

jn is proportional to w
(
θ

(`−1)
jn

)
, a measure of the parent’s “success” in the

environment of the information introduced in cycle `.

3 M phase

If the algorithm were to continue in this way, the number of unique children would never
increase and in general would decrease from cycle to cycle. Indeed, in the context of
Bayesian inference it can be shown under mild regularity conditions that the number of
unique children converges almost surely to 1 as the number of observations increases.
The same can be demonstrated in the context of optimization for a suffi ciently large
value of r in (4).
The M phase addresses this problem by creating diversity amongst sibling particles

in a way that is faithful to the information kernel k∗(`) (θ). It does so using the same
principle of invariance that is central to Markov chain Monte Carlo (MCMC) algorithms,
drawing particles from a transition density dQ(`) (θ | θ∗) with the property∫

Θ

k∗(`) (θ∗) dQ(`) (θ | θ∗) dθ∗ = k∗(`) (θ) ∀ θ ∈ Θ. (12)

The transition density dQ(`) is invariant with respect to the kernel k∗(`) (θ), which pre-
serves the original distribution of the children but introduces the prospect that they will
be different. Notice that (12) implies that the successive application, or convolution, of
a series of invariant transitions defines a transition that is itself invariant. The universe
of invariant transition densities is large and manifest in the MCMC literature. Many of
these transitions are model-specific, for example Gibbs sampling variants of MCMC. On
the other hand a number of families of Metropolis-Hastings transitions apply quite gen-
erally and with problem-specific tuning of parameters can be computationally effi cient.
The current edition of the SABL toolbox incorporates one of these variants, the

Metropolis Gaussian random walk, and the structure of SABL accommodates incor-
poration of others in the future. The M phase applies the Metropolis random walk
repeatedly in steps s = 1, 2, . . ., each step generating a new set of particles θ(`,s)

jn from

the previous set θ(`,s−1)
jn . Following the familiar arithmetic, candidate new particles are

8

generated θ∗(`,s)jn ∼ N
(
θ

(`,s−1)
jn ,Σ(`,s−1)

)
and accepted with probability

min

 k∗(`)
(
θ
∗(`,s)
jn

)
k∗(`)

(
θ

(`,s−1)
jn

) , 1

 .
In SABL Σ(`,s) is proportional to the sample variance of θ(`,s−1)

jn computed using all the
particles. The factor of proportionality increases when the rate of candidate acceptance
in the previous step exceeds a specified threshold and is decreased otherwise. This draws
on established practice in MCMC and works well in this context. Section ?? provides
more detail about this threshold, as well as the initial value and increments of the scaling
factor.
In some applications, especially those with a long parameter vector θ, the multivariate

normal distribution is a suffi ciently poor approximation of the local behavior of k∗(`) (θ)
that the Metropolis Gaussian random walk can be quite ineffi cient. A straightforward
way to address this contingency is the blocked Metropolis Gaussian random walk variant
of the M phase, included in the current edition of SABL. In this variant θ is partitioned
into subvectors and the Gaussian random walk Metropolis algorithm is applied to the
subvectors in turn. Section ?? provides more detail.
The objective of the M phase is to attain a degree of independence of the particles

θ
(`)
jn at the end of each cycle suffi cient to render the final set of particles θjn = θ

(L)
jn a

reliable representation of the distribution implied by the probability density function
p∗ (θ). The idea behind M phase termination in SABL is to measure the degree of
mixing (lack of dependence) amongst the particles at the send of each Metropolis step
s of cycle `, and terminate when this measure meets or exceeds a certain threshold.
In SABL mixing is measured by the average relative numerical effi ciency (RNE) of

a group of functions chosen specifically for this purpose in each model. The RNE of the
SABL approximation of a posterior moment E [g (θ)] =

∫
Θ
g (θ) p∗ (θ) dθ is a measure of

its numerical accuracy relative to that achieved by a hypothetical simulation θij
iid∼ p∗ (θ).

Section 6 explains how this measure is constructed.
A simple stopping rule for theM phase is to terminate the iterations of the Metropolis

random walk when the average RNE of a group of functions first exceeds a stated
threshold. In any application there are practical limits to the average RNE that can
be achieved through these iterations, and so it is also desirable to impose a limit on
their number. Achieving greater independence of particles is especially important in the
last cycle, because at the end of the M phase in that cycle the particles constitute the
representation of p∗ (θ). There are quite a few options forM phase termination, detailed
in Section ??. The SABL toolbox core default criterion is average RNE 0.4 with 100
maximum iterations in cycles 1, . . . , L − 1 and average RNE 0.9 with 300 maximum
iterations in the final cycle L.
Mixing thoroughly is not the objective of the M phase. In MCMC that is essential

in providing a workable representation of the distribution with kernel k∗ (θ). In SABL

9

the C and S phases take on this important task, whereas the function of the M phase
is to place a lower bound on the dependence amongst particles. Section ?? introduces
some elaborations of this stopping criterion as options in the SABL toolbox.

4 Convergence, the two-pass variant of SABL and
accuracy

Durham and Geweke (2015) shows that bounded likelihood

max
θ∈Θ

p (y1:T | θ) <∞ (13)

and existence of the prior moment∫
Θ

|g (θ)| p(0) (θ) dθ <∞ (14)

respectively are suffi cient for the essential condition (6). (Weaker conditions exist but
are more diffi cult to verify: see Durham and Geweke (2015) and references cited there.)
In all posterior simulators the assessment of numerical accuracy is based on a central
limit theorem, which in this context takes the form

N1/2
(
g(J,N) − g

) d−→ N
(
0, σ2

g

)
(15)

where

g =

∫
Θ

g (θ) p∗ (θ) dθ and g(J,N) = N−1

N∑
n=1

g (θjn) .

By itself (15) is not enough: it is essential to compute or approximation σ2
g as well.

Section 6 explains how SABL does this.

5 Convergence and the two-pass variant

The theory developed in the sequential Monte Carlo literature provides a start. It posits
a fixed pre-specified sequence of kernels k(1), . . . , k(L) (see (7)) and a fixed pre-specified
sequence of M phase transition densities dQ(`) (see (12)), together with side conditions
(implied by conditions (13) and (14)), and proves (15). But in any practical application
the kernels k(`) and transition densities dQ(`) are adaptive, relying on information in the
particles θ(`−1)

jn or θ(`,s−1)
jn , rather than fixed. The theory does not apply then because

the kernels and transitions depend on the random particles, and the structure of this
dependence is so complex as to preclude extension of the existing theory to this case
—especially for the transition kernels dQ(`). Thus, this literature provides a theory of
sequential Bayesian learning but not a theory of sequentially adaptive Bayesian learning.

10

It is universally recognized that some form of adaptation is required, for it is impossible to
pre-specify kernels k(`) and transition densities dQ(`) that provide reliable approximations
in tolerable time without knowing a great deal about the posterior distribution —which,
of course, is the goal and not the starting point.
Durham and Geweke (2015) deals with this issue by creating the two-pass variant of

the algorithm. The first pass is exactly as described in this section, with the addition
that the kernels k(`) and transitions dQ(`) are saved. For the specific variants described
in Sections 1 and 3, this amounts to saving the sequence {r`} or {t`} from the C phase
and the doubly-indexed sequence of variance matrices Σ(`,s−1) from theM phase, but the
idea generalizes to other variants of the C and M phases. The second pass re-executes
the algorithm (with different seeds for the random number generator) and uses the
kernels k(`) and transitions dQ(`) computed in the first pass, skipping the work required
to compute these objects from the particles. The theory developed in the sequential
Monte Carlo literature then applies directly to the second pass, because the kernels k(`)

and transitions dQ(`) are in fact fixed in the second pass. The role of the first pass is to
provide the knowledge of the posterior distribution required for sensible pre-specification
of these objects.
Experience thus far is that substantial differences between the first and second passes

do not arise, and can only be made to do so by specifying imprudently small values of
N . Thus in practice it suffi ces to use the two-pass algorithm only occasionally —perhaps
at the inception of a research project when the general character of the model(s), data
and sample size are known, and then again prior to communicating findings.

6 Numerical accuracy

The sequential Monte Carlo literature provides abstract expressions for σ2
g in (15) but

no means of evaluating or approximating σ2
g. SABL provides the approximation using

the particle groups. Consider the second pass of the two-pass algorithm where the con-
vergence theory fully applies. In this setting there is no dependence of particles across
groups. The M phase and the C phase are perfectly parallel: exactly the same opera-
tions applied to all the particles with no communication between particles. Resampling
in the S phase, which introduces dependence amongst particles, takes place entirely
within groups so as not to compromise independence across groups. Therefore the ap-
proximations gjN = N−1

∑N
n=1 g (θjn) of g = E [g (θ)] are independent across the groups

j = 1, . . . , J . A central limit theorem (15) applies within each group. Computing the
cross-group mean gJ,N = J−1

∑J
j=1 gjN , a conventional estimate of σ

2
g in (15) is

σ̂2
g = N · (J − 1)−1

J∑
j=1

(
gjN − gJ,N

)2
(16)

and
(J − 1) σ̂2

g/σ
2
g

d−→ χ2 (J − 1) , (17)

11

the convergence in (17) being in particles per group N . In the limit N → ∞, gJ,N and
σ̂2
g are independent.
The corresponding numerical variance estimate for gJ,N is

σ̂2
g,JN = (JN)−1 σ̂2

g (18)

and the numerical standard error is σ̂g,JN =
(
σ̂2
g,JN

)1/2
. This should not be confused

with the approximation of the posterior variance,

vâr (g) = (JN)−1
J∑
j=1

N∑
n=1

[
g (θjn)− gJ,N

]2
.

The numerical standard error corresponding to (18) is σ̂g,JN =
[
σ̂2
g,JN

]1/2
. This is the

measure of accuracy used in SABL. From (17) the formal interpretation of numerical
standard error is

gJ,N − g
σ̂g,JN

d−→ t (J − 1) .

If particles within groups are independent then σ̂2
g u vâr (g), whereas if they are not then

usually σ̂2
g > vâr (g), although σ̂2

g < vâr (g) may occur and is more likely with smaller
numbers of particle groups J . The relative numerical effi ciency of the approximation
gJ,N is

RNEg = vâr (g) /σ̂2
g. (19)

A useful interpretation of (19) is a hypothetical simulator with θjn
iid∼ p∗ (θ) would achieve

the same accuracy with RNEg · JN particles.
This argument does not apply directly in the first pass because of the adaptation.

In particular, recall that RNE is used in the M phase to assess mixing and determine
the end of the sequence of iterations of the Metropolis random walk. This is an example
of the complex feedback between particles and adaptation in the algorithm that has
frustrated central limit theorems. This shortfall in theory is likely to persist. The
two-pass procedure overcomes the problem and, moreover, provides the foundation for
future variants of the algorithm without the overhead of establishing convergence for
each variant.

7 Marginal likelihood

The SABL algorithm is particularly well suited to providing a numerical approximation
of the marginal likelihood

ML =

∫
Θ

p(0) (θ) p (y1:T | θ) dθ =

∫
Θ

k∗ (θ) dθ. (20)

12

The marginal likelihood, also called the marginal data density, is central in the theory
and practice of Bayesian model comparison, as well as in Bayesian model averaging for
combining models and decision-making. It has posed a particularly diffi cult technical
problem that has seen checkered resolution in the posterior simulation literature as well
as in practice: depending on the combination of posterior simulation method and model,
approximation of ML can be easy to impossible, and reliably assessing the accuracy of
the approximation poses further issues that are again specific to the situation.
The SABL algorithm produces approximations of ML —more precisely logML as is

standard —as a by-product of the C phase. Here we will present the ideas behind the
method, without going into full detail which requires considerable additional notation.
Details are in Section 4 of Durham and Geweke (2015) and are reflected in the SABL
toolbox code. From (5) and (7),∫

Θ

k∗ (θ) dθ =

∫
Θ
k∗(L) (θ) dθ∫

Θ
k ∗(0) (θ) dθ

=
L∏
`=1

∫
Θ
k∗(`) (θ) dθ∫

Θ
k∗(`−1) (θ) dθ

=
L∏
`=1

∫
Θ
w(`) (θ) k∗(`−1) (θ) dθ∫

Θ
k∗(`−1) (θ) dθ

=
L∏
`=1

∫
Θ

w(`) (θ) p(`−1) (θ) dθ. (21)

In the C phase of cycle `, as N →∞,

w`,J,N = (JN)−1
J∑
j=1

N∑
n=1

w(`)
(
θ

(`−1)
jn

)
a.s.−→

∫
Θ

w(`) (θ) p(`−1) (θ) dθ,

Hence from (21),
L∏
`=1

w`,J,N
a.s.−→

∫
Θ

k∗ (θ) dθ,

where the convergence is again in the number of particles per group N . This is the
marginal likelihood (20) in a Bayesian inference context. Durham and Geweke (2015)
discusses the approximation of log (ML) and computing the numerical standard error
for that approximation.

8 Optimization

Return now to the optimization problem, determining θ∗ = arg maxθ∈Θ h (θ). As dis-
cussed in Section ??, SABL approaches this problem using kernels of the form (4) in a
manner analogous to the likelihood function p (y1:T | θ) in Bayesian inference. There con-
tinues to be an initial density p(0) (θ), and the corresponding distribution is sometimes
call the instrumental distribution in this context. This might or might not be intended
or interpreted as the expression of prior beliefs about the solution of the optimization
problem. The density p(0) (θ) is a technical device providing an initial condition for the
algorithm and requires only that p(0) (θ) > 0 ∀ θ ∈ Θ.

13

If h (θ) is bounded above on Θ (the analogue of (13)) then SABL produces particles
θij whose distribution has kernel density p(0) (θ) exp [r · h (θ)]. If h has a unique global
mode θ∗ then, under weak side conditions stated in Geweke and Frischknecht (2014),
θ

p−→ θ∗ as r →∞. In practice one does not know values of r required for satisfactory
results. Recall that in the power tempering variant of the C phase the sequence {r`} is
derived from relative effective sample size (11), a function of the particles θ(`−1)

ij . Replace
the termination criterion r(L) = 1 used for Bayesian inference with one that defines a
suitably close approximation of θ∗.
An example of such a termination criterion is an upper bound for the range of

values of h (θij) over all JN particles. (As discussed in Section ??, there are other
convergence criteria as well, and it is easy for users to provide a customized convergence
criterion.) What is a reasonable threshold size is problem-specific but usually clear. If
h is denominated in dollars then a range of one dollar is likely more than adequate. For
maximum likelihood the kernels are p (y1:T | θ), equivalently h (θ) = log p (y1:T | θ), and
a range of h (θij) somewhere between 10−2 and 10−8 is likely adequate.
It is typical to see a steady increase in power with each successive cycle. In fact

for twice continuously differentiable objective functions h (θ) it can be shown that the
rate of change (r` − r`−1) /r`−1 comes to depend only on the number of elements in θ.
If the C phase power tempering criterion is RESS∗ = 0.5 then for θ with 3 elements it
is 1.153 , 10 elements 0.56, 20 elements 0.349, and 50 elements 0.198. Values are lower
for higher RESS∗ and vice versa. Observed rates are often very close to the theoretical
values in most cycles. Eventually, however, this breaks down because the particles
θij are very close and differences amongst the h (θij), which are critical in evaluating
RESS, become dominated by rounding error arising from the finite number of bits in
floating point arithmetic. At this point the implementation of the algorithm is no longer
faithful to its analytical properties and to continue is to produce noise. As with any
other convergence algorithm it is productive to select explicit convergence explicitly and
thoughtfully.

14

